Skip to main content

Experimental and Theoretical Study of the Atmospheric Degradation of Aldehydes

  • Chapter
Global Atmospheric Change and its Impact on Regional Air Quality

Part of the book series: NATO Science Series ((NAIV,volume 16))

  • 215 Accesses

Abstract

Aldehydes are ubiquitous key components in the chemistry of the troposphere. They are common primary pollutants from biogenic emissions and in residues of incomplete combustion (Ciccioli et al., 1993). Relevant natural sources are vegetation, forest fires and microbiological processes (Kotzias et al, 1997). Aldehydes are also nearly mandatory intermediates in the photo-oxidation processes of most organic compounds in the troposphere (Kerr and Sheppard, 1981; Carlier et al, 1986). Formaldehyde (HCHO) and acetaldehyde (CH3CHO) are among the most abundant carbonyls in the atmosphere. Ambient levels are in the order of a few tens of pptv in clean background conditions (Zhou et al., 1996; Ayers et al., 1997) but may reach tens of ppbv in polluted urban areas as a consequence of the elevated anthropogenic emissions of aldehydes and their precursors from automobile traffic, industrial and domestic heating, and industrial activity (Carlier et al, 1986; Yokouchi et al, 1990). The atmospheric loss processes include photolysis, day-time reaction with OH radicals and with Cl and Br atoms in the marine boundary layer, and reaction with NO3 radicals during the night-time. The photolytic cleavage of aldehydes constitute an important source of free radicals, particularly in the moderately and strongly polluted areas (Carlier et al, 1986; Yokouchi et al, 1990). Aldehydes are toxic compounds themselves, and some of their photo-oxidation products, the peroxyacylnitrates, are phytotoxic and strong eye-irritant compounds (Carlier et al, 1986; Carter et al, 1981). Further, peroxyacylnitrates, such as peroxyacetyl-nitrate (PAN), are long-lived species, which can act as a NO2 reservoir in the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Idaboy, J. R., N. Mora-Diez, R. J. Boyd and A. Vivier-Bunge; On the importance of prereactive complexes in molecule-radical reactions: Hydrogen abstraction from aldehydes by OH, J. Am. Chem. Soc. 123 (2001) 2018–2024.

    Article  Google Scholar 

  • Atkinson, R.; Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data 20 (1991) 459–507.

    Article  Google Scholar 

  • Atkinson, R.; Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data Monograph 2 (1994).

    Google Scholar 

  • Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, M. J. Rossi and J. Troe; Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry. 5. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data 26 (1997) 521–1011.

    Article  Google Scholar 

  • Ayers, G. P., R. W. Gillet, H. Granek, C. de Serves and R. A Cox; Formaldehyde production in clean marine air, Geophys. Res. Lett. 24 (1997) 401–404.

    Article  Google Scholar 

  • Beukes, J. A., B. D’Anna, V. Bakken and C. J. Nielsen; Experimental and theoretical study of the F, Cl and Br reactions with formaldehyde and acetaldehyde, Phys. Chem. Chem. Phys. 2 (2000) 4049–4060.

    Article  Google Scholar 

  • Carlier, P., H. Hannachi and G. Mouvier; The chemistry of carbonyl compounds in the atmosphere — a review, Atmos. Environ. 20 (1986) 2079–2099.

    Article  Google Scholar 

  • Carter, W. P. L., A. M. Winer and J. N. Pitts; Effect of peroxyacetyl nitrate on the initiation of photochemical smog. Environ. Sci. Technol. 15 (1981) 831–834.

    Article  Google Scholar 

  • CATOME “Carbonyls in Tropospheric Oxidation Mechanisms”, CEC Environment and Climate program contract ENV4-CT97-0416, Coordinated by C. Dye (2000).

    Google Scholar 

  • Ciccioli, P., E. Brancaleoni, M. Frattoni, A. Cecinato and A. Brachetti; Ubiquitous occurrence of semivolatile carbonyl-compounds in tropospheric samples and their possible sources, Atmos. Environ. 27A (1993) 1891–1901.

    Google Scholar 

  • D’Anna, B. and C. J. Nielsen; Kinetic study of the vapour-phase reaction between aliphatic aldehydes and the nitrate radical, J Chem. Soc. Faraday Trans. 93 (1997) 3479–3483.

    Article  Google Scholar 

  • D’Anna, B., S. Langer, E. Ljungstrom, C. J. Nielsen and M. Ullerstam; Rate coefficients and Arrhenius parameters for the reaction of the NO3 radical with acetaldehyde and acetaldehyde-1d, Phys. Chem. Chem. Phys. 3 (2001a) 1631–1637.

    Article  Google Scholar 

  • D’Anna, B., Ø. Andresen, Z. Gefen and C. J. Nielsen; Kinetic study of OH and NO3 radical reactions with 14 aliphatic aldehydes, Phys. Chem. Chem. Phys. 3 (2001b) 3057–3063.

    Article  Google Scholar 

  • D’Anna, B. V. Bakken, J. A. Beukes, J. T. Jodkowski and C. J. Nielsen; Experimental and theoretical study of gas phase NO3 and OH radical reactions with formaldehyde, acetaldehyde and their isotopomers, Phys. Chem. Chem. Phys. 4 (2002) submitted.

    Google Scholar 

  • Kerr, J. A. and D. W. Sheppard; Kinetics of the reactions of hydroxyl radicals with aldehydes studied under atmospheric conditions. Environ. Sci. Technol. 8 (1981) 960–963.

    Article  Google Scholar 

  • Kotzias, D., C. Konidari and C. Spartà; Volatile carbonyl compounds of biogenic origin — emission and concentration in the atmosphere, in Biogenic Volatile Organic Compouns in the Atmosphere — Summary of present knowledge (Eds. G. Helas, S. Slanina and R. Steinbrecher), SPB Academic Publishers, Amsterdam, 1997, 67–78.

    Google Scholar 

  • Morris, E. D. Jr. and H. Niki; Mass spectrometric study of the reaction of hydroxyl radical with formaldehyde, J. Chem. Phys. 55 (1971) 1991–1992.

    Article  Google Scholar 

  • Niki, H., P. D. Maker, L. P. Breitenbach and C. M. Savage; FTIR studies of the kinetics and mechanism for the reaction of chlorine atom with formaldehyde, Chem. Phys. Lett. 57 (1978) 596–599.

    Article  Google Scholar 

  • Niki, H., P. D. Maker, C. M. Savage and L. P. Breitenbach; An Fourier transform infrared study of the kinetics and mechanism for the reaction of hydroxyl radical with formaldehyde, J Phys. Chem. 88 (1984) 5342–5344.

    Article  Google Scholar 

  • Niki, H., P. D. Maker, C. M. Savage and L. P. Breitenbach; FTIR study of the kinetics and mechanism for chlorine-atom-initiated reactions of acetaldehyde, J. Phys. Chem. 89 (1985) 588–591.

    Article  Google Scholar 

  • Papagni, C, J. Arey and R. Atkinson; Rate constants for the gas-phase reactions of a series of C-3 — C-6 aldehydes with OH and NO3 radicals. Int. J. Chem. Kin. 32 (2000) 79–84.

    Article  Google Scholar 

  • RADICAL “Evaluation of Radical Sources in Atmospheric Chemistry through Chamber and Laboratory Studies”, CEC Environment and Climate program contract ENV4-CT97-0419, Coordinated by G. Moortgat (2000).

    Google Scholar 

  • Soto, M. R. and M. Page; Features of the potential energy surface for reactions of hydroxyl with formaldehyde, J. Phys. Chem. 94 (1990) 3242–3246.

    Article  Google Scholar 

  • Taylor, P. H., M. S. Rahman, M. Arif, B. Dellinger and P. Marshall; Kinetics and mechanistic studies of the reaction of hydroxyl radicals with acetaldehyde over an extended temperature range, 26th International Symposium on Combustion (1996) 497–504.

    Google Scholar 

  • Ullerstam, M., S. Langer and E. Ljungström, Gas phase rate coefficients and activation energies for the reaction of butanal and 2-methyl-propane with nitrate radicals, Int. J. Chem. Kit. 32 (2000) 294–303.

    Article  Google Scholar 

  • Wallington, T. J., L. M. Skewes, W. O. Siegel, C. H. Wu and S. M. Japar; Gas phase reaction of chlorine atoms with a series of oxygenated organic species at 295 K, Int. J. Chem. Kin. 20 (1988) 867–875.

    Article  Google Scholar 

  • Yokouchi, Y., H. Mukai, K. Nakajima and Y. Ambe; Semivolatile aldehydes as predominant organic gases in remote areas, Atmospheric Environment 24A (1990) 439–442.

    Google Scholar 

  • Zhou, X. L., Y-N. Lee, L. Newman, X. H. Chen and K. Mopper; Tropospheric formaldehyde concentration at the Mauna Loa observatory during the Mauna Loa observatory photochemistry experiment 2, J. Geophys. Res. 101 (1996) 14711–14719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

D'Anna, B., Nielsen, C.J. (2002). Experimental and Theoretical Study of the Atmospheric Degradation of Aldehydes. In: Barnes, I. (eds) Global Atmospheric Change and its Impact on Regional Air Quality. NATO Science Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0082-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0082-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0959-4

  • Online ISBN: 978-94-010-0082-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics