Skip to main content

Non-Linear Effects on the Spin Dynamics of Polaritons in II–VI Microcavities

  • Conference paper
  • 255 Accesses

Part of the book series: NATO Science Series ((NAII,volume 119))

Abstract

We have studied the polarization of the light emitted by a semiconductor microcavity as a function of the detuning between the cavity-mode and the exciton. Under high excitation conditions, when the cavity is in a non-linear regime, the emission originates from the cavity-like branch of the polaritons, i.e. the lower polariton branch (LPB) for negative detuning and the upper polaritons branch (UPB) for positive detuning. The time dependence of the polarization, which represents the spin dynamics of the polaritons, shows a very rich and novel behavior in this non-linear regime, as compared to that under low excitation conditions. In the latter case, the polarization decays exponentially to zero after a pulsed excitation, in a similar way to that known for bare excitons in quantum wells, while in the non-linear regime the polarization reaches its maximum at a finite time and furthermore, its sign is strongly dependent on the cavity-exciton detuning = E CE X): it is positive for δ > 0 and negative for δ < 0. The negative polarization is directly related with an energy splitting between the σ+- and σ -polarized components of the emission, which appears when the excitation density drives the cavity into the non-linear regime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weisbuch, C, Nishioka, M., Ishikawa, A., and Arakawa, Y. (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314–3317.

    Article  ADS  Google Scholar 

  2. Haroche, S. and Kleppner, D. (1989) Cavity Quantum Electrodynamics, Phys. Today 42, 24–30.

    Article  ADS  Google Scholar 

  3. Houdre, R., Gibernon, J.L., Pellandini, P., Stanley, R.P., Osterle, U., Weisbuch, C, O’Gorman, J., Roycroft, B., and Ilegems, M. (1995) Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons, Phys. Rev. B 52, 7810–7813.

    Article  ADS  Google Scholar 

  4. Senellart, P. and Bloch, J. (1999) Nonlinear emission of microcavity polaritons in the low density regime, Phys. Rev. Lett. 82, 1233–1236.

    Article  ADS  Google Scholar 

  5. Stevenson, R.M., Astratov, V.N., Skolnick, M.S., Whittaker, D.M., Emam-Ismail, M., Tartakovskii, A.I., Savvidis, P.G., Baumberg, J.J., and 5, J. S. R. (2000) Continuous Wave Observation of Massive Polariton Redistribution by Stimulated scattering in Semiconductor Microcavities, Phys. Rev. Lett. 85, 3680–3683.

    Article  ADS  Google Scholar 

  6. Dasbach, G., Baars, T., Bayer, M., Larionov, A., and Forchel, A. (2000) Coherent and incoherent polaritonic gain in a planar semiconductor microcavity, Phys. Rev. B 62, 13076–13083.

    Article  ADS  Google Scholar 

  7. Dang, L.S., Heger, D., Andre, R., Boeuf, F., and Romestain, R. (1998) Stimulation of Polariton Photoluminescence in Semiconductor Microcavity, Phys. Rev. Lett. 81, 3920–3923.

    Article  ADS  Google Scholar 

  8. Bleuse, J., Kany, F., Boer, A.P. d, Christianen, P.C.M., André, R., and Ulmer-Tuffigo, H. (1998) Laser emission on a cavity-polariton line in a II-VI microcavity, J. Crystal Growth 184-185, 750–753.

    ADS  Google Scholar 

  9. Boeuf, F, André, R., Romestain, R., and Dang, L.S. (2000) Evidence of polariton stimulation in semiconductor microcavities, Phys. Rev. B 62, 2279–2282.

    Article  ADS  Google Scholar 

  10. Mueller, M., Bleuse, J., and Andre, R. (2000) Dynamics of the cavity polariton in CdTe-based semiconductor microcavities: Evidence for a relaxation edge. Phys. Rev. B 62, 16886–16892.

    Article  ADS  Google Scholar 

  11. Savvidis, P.G., Baumberg, J.J., Stevenson, R.M., Skolnick, M.S., Whittaker, D.M., and Roberts, J.S. (2000) Angle-resonant stimulated polariton amplifier, Phys. Rev. Lett. 84, 1547–1550.

    Article  ADS  Google Scholar 

  12. Pikus, G.E. and Ivchenko, E.L. (1982) Optical Orientation and Polarized Luminescence of Excitons in Semiconductors, in E.I. Rashba and M.D. Surge (eds.), Excitons, North-Holland Publishing Company, pp. 209–266.

    Google Scholar 

  13. D’yakonov, M.I. and Perel’, V.I. (1984) Theory of optical spin orientation of electrons and nuclei in semiconductors, in F. Maier and B.P. Zakharchenya (eds.), Optical Orientation, Elsevier Science Publishers Amsterdam, pp. 11–72.

    Google Scholar 

  14. Pikus, G.E. and Titkov, A.N. (1984) Spin relaxation under optical orientation in semiconductors, in F. Maier and B.P. Zakharchenya (eds.), Optical Orientation, Elsevier Science Publishers Amsterdam, pp. 73–132.

    Google Scholar 

  15. Johnson, E.J., Seymour, R.J., and Alfano, R.R. (1984) Photoluminescence of spin-polarized electrons in semiconductors, in R.R. Alfano (eds.), Semiconductors Probed by Ultrafast Laser Spectroscopy Vol. II, Academic Press, pp. 200–241.

    Google Scholar 

  16. Elliot, R.J. (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors, Phys. Rev. 96, 266–279.

    Article  ADS  Google Scholar 

  17. Yafet, Y, Ed. (1963) Solid State Physics New York, Academic Press.

    Google Scholar 

  18. D’yakonov, M.I. and Perel’, V.I. (1971) On spin orientation of electrons in interband absorption of light in semiconductors, Sov. Phys. JETP 33, 1053–1065.

    ADS  Google Scholar 

  19. D’yakonov, M.I. and Perel’, V.I. (1972) Spin relaxation of conduction electrons in noncentrosymmetric semiconductors, Sov. Phys.-Solid State 13, 3023–3027.

    Google Scholar 

  20. Dymnikov, V.D., D’yakonov, M.I. and Perel’, V.I. (1976) Anisotropy of the momentum distribution of photo-excited electrons and the polarization of hot luminescence in semiconductors, Sov. Phys.-JETP 44, 1252–1259.

    ADS  Google Scholar 

  21. Bir, G.L., Aronov, A.G., and Pikus, G.E. (1976) Spin relaxation of electrons due to scattering by holes, Sov. Phys. JETP 42, 705–712.

    ADS  Google Scholar 

  22. Damen, T.C., Vina, L., Cunningham, J.E., and Shah, J. (1991) Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells, Phys. Rev. Lett. 67, 3432–3435.

    Article  ADS  Google Scholar 

  23. Vinattieri, A., Shah, J., Damen, T.C., Goossen, K.W., Pfeiffer, L.N., Maialle, M.Z., and Sham, L.J. (1993) Electric field dependence of exciton spin relaxation in GaAs/AlGaAs quantum wells, Appl. Phys. Lett. 63, 3164–3166.

    Article  ADS  Google Scholar 

  24. Vina, L. (1999) Spin relaxation in low-dimensional systems, J. Phys.: Condens. Matt. 11, 5929–5952.

    Article  ADS  Google Scholar 

  25. Malinowski, A., Britton, R.S., Grevatt, T., Harley, T., Ritchie, D.A., and Simmons, M.Y (2000) Spin relaxation in GaAs/GaAlAs quantum wells, Phys. Rev. B 62, 13034–13039.

    Article  ADS  Google Scholar 

  26. Sham, L.J. (1993) Theory of spin dynamics of excitons and free carriers in quantum wells, in DJ. Lockwood and A. Pinczuk (eds.), Optical Phenomena in Semiconductor Structures of Reduced Dimension, Kluwer Academic Publishers B.V. The Netherlands, pp. 201–211.

    Chapter  Google Scholar 

  27. Ferreira, R. and Bastard, G. (1994) “Spin”-flip of holes in asymmetric quantum wells, Solid State Electron. 37, 851–855.

    Article  ADS  Google Scholar 

  28. de Andrade e Silva, E.A. (1997) Exciton-bound electron-spin relaxation, Phys. Rev. B 56, 9259–9262.

    Article  ADS  Google Scholar 

  29. Tartakovskii, A.I., Kulakovskii, V.D., Krizhanovskii, D.N., Skolnick, M.S., Astratov, V.N., Armitage, A., and Roberts, J.S. (1999) Nonlinearities in emission from the lower polariton branch of semiconductor microcavities, Phys. Rev. B 60, 11293–11296.

    Article  ADS  Google Scholar 

  30. Renucci, P., Marie, X., Amand, T., Paillard, M., Senellart, P., and Bloch, J. (2001) Non-linear spin polarization dynamics in semiconductor microcavities, in N. Miura and T. Ando (eds.), Springer Proceedings in Physics 87, Springer-Verlag New York, pp. 653–654.

    Google Scholar 

  31. Martin, M.D., Vina, L., Son, J.K., and Mendez, E.E. (2001) Spin dynamics of cavity polaritons, Solid State Commun. 117, 267–271.

    Article  ADS  Google Scholar 

  32. Lagoudakis, P.G., Savvidis, P.G., Baumberg, J.J., Whittaker, D.M., Eastham, P.R., Skolnick, M.S., and Robert, J.S. (2002) Stimulated spin dynamics of polaritons in semiconductor microcavities, Phys. Rev. B 65, 161310–161313.

    Article  ADS  Google Scholar 

  33. Shah, J. (1996) Ultrafast Spectroscopy of Semiconductors and Semiconductor Heterostructures. Berlin, Springer Verlag.

    Google Scholar 

  34. Fernández-Rossier, J., Tejedor, C, Munoz, L. and Vina, L. (1996) Polarized interacting exciton gas in quantum wells and bulk semiconductors, Phys. Rev. B 54, 11582–11591.

    Article  ADS  Google Scholar 

  35. Houdre, R., Weisbuch, C, Stanley, R.P., Oesterle, U., Pellandini, P., and Hegems, M. (1994) Measurements of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73, 2043–2046.

    Article  ADS  Google Scholar 

  36. Freixanet, T., Sermage, B., Bloch, J., Marzin, J.Y., and Planel, R. (1999) Annular resonant Rayleigh scattering in the picosecond dynamics of cavity polaritons, Phys. Rev. B 60, 8509–8512.

    Article  ADS  Google Scholar 

  37. Tartakovskii, A.I., Kulakovskii, V.D., Krizhanovskii, D.N., Skolnick, M.S., Astratov, V.N., Armitage, A., and Roberts, J.S. (1999) Nonlinearities in emission from the lower polariton branch of semiconductor microcavities, Phys. Rev. B 60, 11293–11296.

    Article  ADS  Google Scholar 

  38. Damen, T.C., Vina, L., Cunningham, J.E., Shah, J., and Sham, L.J. (1991) Dynamics of formation and relaxation of intrinsic excitons and relaxation and thermalization of exciton-spin in GaAs quantum wells Phys. Rev. Lett. 67, 3432–3435.

    Article  ADS  Google Scholar 

  39. Munoz, L., Pérez, E., Viña, L. and Ploog, K. (1995) Spin relaxation in intrinsic GaAs quantum wells, influence of exciton localization, Phys. Rev. B 51, 4247–4257.

    Article  ADS  Google Scholar 

  40. Savvidis, P.G., Baumberg, J.J., Porras, D., Whittaker, D.M., Skolnick, S., and Roberts, J.S. (2002) Ring emission and exciton-pair scattering in semiconductor microcavities, Phys. Rev. B 65,73309–73312.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Aichmayr, G. et al. (2003). Non-Linear Effects on the Spin Dynamics of Polaritons in II–VI Microcavities. In: Ossau, W.J., Suris, R. (eds) Optical Properties of 2D Systems with Interacting Electrons. NATO Science Series, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0078-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0078-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1549-6

  • Online ISBN: 978-94-010-0078-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics