Skip to main content

Cluster Meanfield Approximation for the Optical Response of Weakly Doped Semiconductor Quantum Wells

  • Conference paper
Book cover Optical Properties of 2D Systems with Interacting Electrons

Part of the book series: NATO Science Series ((NAII,volume 119))

  • 255 Accesses

Abstract

The calculation of the optical properties of doped semiconductor quantum wells is an intricate many-body problem because of the dynamical response of the excess carriers to the photogenerated valence band hole. At low densities, however, where the main effect of the dynamical response is the formation of trions, a simple cluster meanfield approximation can be effectively employed to calculate the optical susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haug, H. and Schmitt-Rink, S. (1984), Electron theory of the optical properties of laser-excited semiconductors, Prog. Quant. Electr. 9, 3–100.

    Article  ADS  Google Scholar 

  2. Schmitt-Rink, S., Chemla, D.S., and Miller, D.A.B. (1989), Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Phys. 38, 89–188.

    Article  ADS  Google Scholar 

  3. Zimmermann, R. (1988), Many-Particle Theory of Highly Excited Semiconductors, Teubner Texte für Physik, Bd. 18, Teubner Verlagsgesellschaft, Leibzig.

    Google Scholar 

  4. e, e, and h denote, respectively, CB electrons, CB holes, and VB holes; a trion, e.g., is therefore a eeh cluster.

    Google Scholar 

  5. For a recent review see, e.g., Brum, J.A. and Hawrylak, P. (1997), Fermi egde singularity in the optical properties of two-dimensional electron gas, Comments Cond. Mat. Phys. 18, 135–161.

    Google Scholar 

  6. Kheng, K., Cox, R.T., Merle d’Aubigné, Y, Bassani, F., Saminadayar, K., and Tatarenko, S. (1993), Observation of negatively charged excitons X in semiconductor quantum wells, Phys. Rev. Lett. 71, 1752–1755.

    Article  ADS  Google Scholar 

  7. Usukura, J., Suzuki, Y., and Varga, K. (1999), Stability of two-and three-dimensional excitonic complexes, Phys. Rev. B 59, 5652–5661.

    Article  ADS  Google Scholar 

  8. Ruan, W.J., Chan, K.S., Ho, H.P., Zhang, R.Q., and Pun, E.Y.P. (1999), Hyperspherical approach for charged excitons in quantum wells, Phys. Rev. B 60, 5714–5720.

    Article  ADS  Google Scholar 

  9. Stébé, B. and Ainane, A. (1989), Ground-state energy and optical absorption of excitonic trions in two-dimensional semiconductors, Superlattices and Microstructures 5, 545–548.

    Article  ADS  Google Scholar 

  10. Stébé, B., Munschy, G., Stauffer, L., Dujardin, F., and Murat, J. (1997), Excitonic trion X in semiconductor quantum wells, Phys. Rev. B 56, 12454–12461.

    Article  ADS  Google Scholar 

  11. Stébé, B., Feddi, E., Ainane, A., and Dujardin, F. (1998), Optical and magneto-optical absorption of negatively charged excitons in three-and two-dimensional semiconductors, Phys. Rev. B 58, 9926–9932.

    Article  ADS  Google Scholar 

  12. Bronold, F. X. (2000), Optical absorption of a weakly n-doped semiconductor quantum well, Phys. Rev. B 61, 12620–12623.

    Article  ADS  Google Scholar 

  13. Esser, A., Runge, E., Zimmermann, R., and Langbein, W. (2000), Photoluminescence and radiative lifetime of trions in GaAs quantum wells, Phys. Rev. B 62, 8232–8239.

    Article  ADS  Google Scholar 

  14. Esser, A., Zimmermann, R., and Runge, E. (2001), Theory of trion spectra in semiconductor nanostructures, phys. stat. sol. (b) 227, 317–330.

    Article  ADS  Google Scholar 

  15. Suris, R.A., Kochereshko, V.P., Astakhov, G.V., Yakovlev, D.R., Ossau, W., Nürnberger, J., Faschinger, W., Landwehr, G., Wojtowicz, T., Karczewski, G., and Kossut, J. (2001), Excitons and Trions modified by interaction with a two-dimensional electron gas, phys. stat. sol. (b) 227, 343–353.

    Article  ADS  Google Scholar 

  16. Lovisa, S., Cox, R.T., Magnea, N., and Saminadayar, K. (1997), Filling-factor dependence of the negatively-charged-exciton absorption in a CdTe quantum well, Phys. Rev. B 56, R12787–R12790.

    Article  ADS  Google Scholar 

  17. Siviniant, J., Scalbert, D., Kavokin, A.V., Coquillat, D., Lascaray, J.-P. (1999), Chemical equilibrium between excitons, electrons, and negatively charged excitons in semiconductor quantum wells, Phys. Rev. B 59, 1602–1604.

    Article  ADS  Google Scholar 

  18. Eytan, G., Yayon, Y, Rappaport, M., Shtrikman, H., and Bar-Joseph, I. (1998), Near-Field spectroscopy of gated electron gas: A direct evidence for electron localization, Phys. Rev. Lett. 81, 1666–1669.

    Article  ADS  Google Scholar 

  19. Manassen, A., Cohen, E., Arza Ron, Linder, E., and Pfeiffer, L.N. (1996), Exciton and trion spectral line shape in the presence of an electron gas in GaAs/AlAs quantum wells, Phys. Rev. B 54, 10609–10613.

    Article  ADS  Google Scholar 

  20. Shields, A.J., Pepper, M., Ritchie, D.A., and Simmons, M.Y (1995), Influence of excess electrons and magnetic fields on Mott-Wannier excitons in GaAs quantum wells, Adv. Phys. 44, 47–72.

    Article  ADS  Google Scholar 

  21. Brown, S.A., Young, Jeff F., Brum, J.A., Hawrylak, P., and Wasilewski, Z. (1996), Evolution of the interband absorption threshold with the density of a two-dimensional electron-gas, Phys. Rev. B 54, R11082–R11085.

    Article  ADS  Google Scholar 

  22. Yusa, G., Shtrikman, H., and Bar-Joseph, I. (2000), Onset of exciton absorption in modulation-doped GaAs quantum wells, Phys. Rev. B 62, 15390–15393.

    Article  ADS  Google Scholar 

  23. For a recent comprehensive overview see, e.g., Zimmermann, R. (Ed.) (2001), Proceedings of the Miniworkshop on Trion Physics, phys. stat. sol. (b) 227.

    Google Scholar 

  24. See, e.g., Dukelsky, J., Röpke, G., and Schuck, P. (1998), Generalized Brückner-Hartree-Fock theory and self-consistent RPA, Nucl. Phys. A 628, 17–40.

    Article  ADS  Google Scholar 

  25. Haug, H. and Koch, S.W. (1990), Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific, Singapore.

    Google Scholar 

  26. Bethe, H.A. and Salpeter, E.E. (1957), Quantum Mechanics of one-and two-electron atoms, Springer Verlag, Berlin.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bronold, F.X. (2003). Cluster Meanfield Approximation for the Optical Response of Weakly Doped Semiconductor Quantum Wells. In: Ossau, W.J., Suris, R. (eds) Optical Properties of 2D Systems with Interacting Electrons. NATO Science Series, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0078-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0078-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1549-6

  • Online ISBN: 978-94-010-0078-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics