Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 123))

  • 317 Accesses

Abstract

These lectures provide a phenomenological introduction to supersymmetry, concentrating on the minimal supersymmetric extension of the Standard Model (MSSM). Motivations are provided for thinking that supersymmetry might appear at the TeV scale, including the naturalness of the mass hierarchy, gauge unification and the probable mass of the Higgs boson. Then simple globally supersymmetric field theories are introduced, with the emphasis on features important for model-building. Supersymmetry breaking and local supersymmetry (supergravity) are then introduced, and the structure of sparticle mass matrices and mixing are reviewed. The available experimental and cosmological constraints on MSSM parameters are discussed and combined, and the prospects for discovering supersymmetry in future experiments are previewed. Finally, the observability of leptonic processes violating flavour and CP are discussed, on the basis of the minimal supersymmetric seesaw model of neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Ellis, Lectures at 1998 CERN Summer School, St. Andrews, Beyond the Standard Model for Hillwalkers, arXiv:hep-ph/9812235.

    Google Scholar 

  2. J. R. Ellis, The Superstring: Theory Of Everything, Or Of Nothing?, Nature 323 (1986) 595.

    Article  ADS  Google Scholar 

  3. J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. B 260 (1991) 131; U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B 260 (1991) 447; P. Langacker and M. x. Luo, Phys. Rev. D 44 (1991) 817; C. Giunti, C. W. Kim and U. W. Lee, Mod. Phys. Lett. A 6 (1991) 1745.

    Article  ADS  Google Scholar 

  4. L. Maiani, Proceedings of the 1979 Gif-sur-Yvette Summer School On Particle Physics, 1; G.’t Hooft, in Recent Developments in Gauge Theories, Proceedings of the Nato Advanced Study Institute, Cargese, 1979, eds. G. ’t Hooft et al., (Plenum Press, NY, 1980); E. Witten, Phys. Lett. B 105 (1981) 267.

    Google Scholar 

  5. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, (Cambridge Univ. Press, 1987).

    Google Scholar 

  6. D. A. Ross and M. J. Veltman, Nucl. Phys. B 95 (1975) 135.

    Article  ADS  Google Scholar 

  7. P. W. Higgs, Phys. Lett. 12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508.

    Article  ADS  Google Scholar 

  8. F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321.

    Article  MathSciNet  ADS  Google Scholar 

  9. C. T. Hill, Phys. Lett. B 266 (1991) 419; for a recent review, see: C. T. Hill and E. H. Simmons, arXiv:hep-ph/0203079.

    Article  ADS  Google Scholar 

  10. For a historical reference, see: E. Farhi and L. Susskind, Phys. Rept. 74 (1981) 277.

    Article  ADS  Google Scholar 

  11. S. Dimopoulos and L. Susskind, Nucl. Phys. B 155 (1979) 237; E. Eichten and K. Lane, Phys. Lett. B 90 (1980) 125.

    Article  ADS  Google Scholar 

  12. J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and P. Sikivie, Nucl. Phys. B 182 (1981) 529.

    Article  ADS  Google Scholar 

  13. S. Dimopoulos and J. R. Ellis, Nucl. Phys. B 182 (1982) 505.

    Article  ADS  Google Scholar 

  14. G. Altarelli, F. Caravaglios, G. F. Giudice, P. Gambino and G. Ridolfi, JHEP 0106 (2001) 018 [arXiv:hep-ph/0106029].

    Article  ADS  Google Scholar 

  15. For a recent reference, see: K. Lane, Two lectures on technicolor, arXiv:hep-ph/0202255.

    Google Scholar 

  16. B. Holdom, Phys. Rev. D 24 (1981) 1441.

    Article  ADS  Google Scholar 

  17. S. R. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251.

    Article  ADS  Google Scholar 

  18. R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B 88 (1975) 257.

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Iachello, Phys. Rev. Lett. 44 (1980) 772.

    Article  ADS  Google Scholar 

  20. P. Fayet, as reviewed in Supersymmetry, Particle Physics And Gravitation, CERN-TH-2864, published in Proc. of Europhysics Study Conf. on Unification of Fundamental Interactions, Erice, Italy, Mar 17-24, 1980, eds. S. Ferrara, J. Ellis, P. van Nieuwenhuizen (Plenum Press, 1980).

    Google Scholar 

  21. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/Weicome.html.

    Google Scholar 

  22. Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 257 (1991) 83; H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815.

    Article  ADS  Google Scholar 

  23. For an early review, see: P. Fayet and S. Ferrara, Phys. Rept. 32 (1977) 249; see also: H. P. Nilles, Phys. Rept. 110 (1984) 1; H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985) 75.

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Wess and B. Zumino, Phys. Lett. B 49 (1974) 52; Nucl. Phys. B 70 (1974) 39.

    Article  ADS  Google Scholar 

  25. J. Wess and B. Zumino, Nucl. Phys. B 78 (1974) 1.

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Antoniadis and K. Benakli, Int. J. Mod. Phys. A 15 (2000) 4237 [arXiv:hep-ph/0007226].

    MathSciNet  ADS  Google Scholar 

  27. S. Ferrara, J. Wess and B. Zumino, Phys. Lett. B 51 (1974) 239; S. Ferrara, J. Iliopoulos and B. Zumino, Nucl. Phys. B 77 (1974) 413.

    Article  ADS  Google Scholar 

  28. B. A. Campbell, S. Davidson, J. R. Ellis and K. A. Olive, Phys. Lett. B 256 (1991) 457; W. Fischler, G. F. Giudice, R. G. Leigh and S. Paban, Phys. Lett. B 258 (1991) 45.

    Article  ADS  Google Scholar 

  29. S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981) 150; N. Sakai, Z. Phys. C 11 (1981) 153.

    Article  ADS  Google Scholar 

  30. P. Fayet and J. Iliopoulos, Phys. Lett. B 51 (1974) 461.

    Article  ADS  Google Scholar 

  31. M. Dine, N. Sciberg and E. Witten, Nucl. Phys. B 289 (1987) 589.

    Article  ADS  Google Scholar 

  32. L. O’Raifeartaigh, Nucl. Phys. B 96 (1975) 331; P. Fayet, Phys. Lett. B 58 (1975) 67.

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Polonyi, Hungary Central Inst. Res. preprint KFKI-77-93 (1977).

    Google Scholar 

  34. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Nucl. Phys. B 147 (1979) 105.

    Article  ADS  Google Scholar 

  35. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 68 (1982) 927 [Erratum-ibid. 70 (1982) 330]; L.E. Ibáñez and G.G. Ross, Phys. Lett. B 110 (1982) 215; L.E. Ibáñez, Phys. Lett. B 118 (1982) 73; J. Ellis, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. B 121 (1983) 123; J. Ellis, J. Hagelin, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. B 125 (1983) 275; L. Alvarez-Gaumé, J. Polchinski, and M. Wise, Nucl. Phys. B 221 (1983) 495.

    Article  ADS  Google Scholar 

  36. J. R. Ellis and D. V. Nanopoulos, Phys. Lett. B 110 (1982) 44; R. Barbieri and R. Gatto, Phys. Lett. B 110 (1982) 211.

    Article  ADS  Google Scholar 

  37. S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 1285.

    Article  ADS  Google Scholar 

  38. J. R. Ellis and S. Rudaz, Phys. Lett. B 128 (1983) 248.

    Article  ADS  Google Scholar 

  39. J. R. Ellis, T. Falk, G. Ganis, K. A. Olive and M. Schmitt, Phys. Rev. D 58 (1998) 095002 [arXiv:hep-ph/9801445].

    Article  ADS  Google Scholar 

  40. J. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Nucl. Phys. B 238 (1984) 453; see also H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.

    Article  ADS  Google Scholar 

  41. H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.

    Article  ADS  Google Scholar 

  42. S. Heinemeyer, W. Hollik and G. Weiglein, Comput. Phys. Commun. 124, 76 (2000) [arXiv:hep-ph/9812320]; S. Heinemeyer, W. Hollik and G. Weiglein, Eur. Phys. J. C 9 (1999) 343 [arXiv:hep-ph/9812472].

    Article  ADS  Google Scholar 

  43. Joint LEP 2 Supersymmetry Working Group, Combined LEP Chargino Results, up to 208 Ge V, http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/ charginos _pub. html.

    Google Scholar 

  44. Joint LEP 2 Supersymmetry Working Group, Combined LEP S electron/Smuon/Stau Results, 183-208 Ge V, http://alephwww.cern.ch/~ganis/SUSYWG/SLEP/sleptons_2k01.html.

    Google Scholar 

  45. J. R. Ellis, T. Falk, G. Ganis, K. A. Olive and M. Srednicki, Phys. Lett. B 510 (2001) 236 [arXiv:hep-ph/0102098].

    Article  ADS  Google Scholar 

  46. LEP Higgs Working Group for Higgs boson searches, OPAL Collaboration, ALEPH Collaboration, DELPHI Collaboration and L3 Collaboration, Search for the Standard Model Higgs Boson at LEP, ALEPH-2001-066, DELPHI-2001-113, CERN-L3-NOTE-2699, OPAL-PN-479, LHWG-NOTE-2001-03, CERN-EP/2001-055, arXiv:hep-ex/0107029; Searches for the neutral Higgs bosons of the MSSM: Preliminary combined results using LEP data collected at energies up to 209 Ge V, LHWG-NOTE-2001-04, ALEPH-2001-057, DELPHI-2001-114, L3-NOTE-2700, OPAL-TN-699, arXiv:hep-ex/0107030.

    Google Scholar 

  47. M.S. Alam et al., [CLEO Collaboration], Phys. Rev. Lett. 74 (1995) 2885 as updated in S. Ahmed et al., CLEO CONF 99-10; BELLE Collaboration, BELLE-CONF-0003, contribution to the 30th International conference on High-Energy Physics, Osaka, 2000. See also K. Abe et al., [Belle Collaboration], [arXiv:hepex/0107065]; L. Lista [BaBar Collaboration], [arXiv:hep-ex/0110010]; C. Degrassi, P. Gambino and G. F. Giudice, JHEP 0012 (2000) 009 [arXiv:hep-ph/0009337]; M. Carena, D. Garcia, U. Nierste and C. E. Wagner, Phys. Lett. B 499 (2001) 141 [arXiv:hep-ph/0010003].

    Article  ADS  Google Scholar 

  48. J. R. Ellis, K. A. Olive and Y. Santoso, New J. Phys. 4 (2002) 32 [arXiv:hep-ph/0202110].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Carena, J. R. Ellis, A. Pilaftsis and C. E. Wagner, Nucl. Phys. B 586 (2000) 92 [arXiv:hep-ph/0003180], Phys. Lett. B 495 (2000) 155 [arXiv:hep-ph/0009212]; and references therein.

    Article  ADS  Google Scholar 

  50. J. R. Ellis, G. Ganis, D. V. Nanopoulos and K. A. Olive, Phys. Lett. B 502 (2001) 171 [arXiv:hep-ph/0009355].

    Article  ADS  Google Scholar 

  51. H. N. Brown et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 86, 2227 (2001) [arXiv:hep-ex/0102017].

    Article  ADS  Google Scholar 

  52. G. W. Bennett et al. [Muon g-2 Collaboration], ppm,” Phys. Rev. Lett. 89 (2002) 101804 [Erratum-ibid. 89 (2002) 129903] [arXiv:hep-ex/0208001].

    Article  ADS  Google Scholar 

  53. M. Davier, S. Eidelman, A. Hocker and Z. Zhang, arXiv:hep-ph/0208177; see also K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, arXiv:hep-ph/0209187; F. Jegerlehner, unpublished, as reported in M. Krawczyk, arXiv:hep-ph/0208076.

    Google Scholar 

  54. M. Knecht and A. Nyffeler, arXiv:hep-ph/0111058; M. Knecht, A. Nyffeler, M. Perrottet and E. De Rafael, arXiv:hep-ph/0111059; M. Hayakawa and T. Kinoshita, arXiv:hep-ph/0112102; I. Blokland, A. Czarnecki and K. Melnikov, arXiv:hep-ph/0112117; J. Bijnens, E. Pallante and J. Prades, arXiv:hep-ph/0112255.

    Google Scholar 

  55. L. L. Everett, G. L. Kane, S. Rigolin and L. Wang, Phys. Rev. Lett. 86, 3484 (2001) [arXiv:hep-ph/0102145]; J. L. Feng and K. T. Matchev, Phys. Rev. Lett. 86, 3480 (2001) [arXiv:hep-ph/0102146]; E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001) [arXiv:hep-ph/0102147]; U. Chattopadhyay and P. Nath, Phys. Rev. Lett. 86, 5854 (2001) [arXiv:hep-ph/0102157]; S. Komine, T. Moroi and M. Yamaguchi, Phys. Lett. B 506, 93 (2001) [arXiv:hep-ph/0102204]; J. Ellis, D. V. Nanopoulos and K. A. Olive, Phys. Lett. B 508 (2001) 65 [arXiv:hep-ph/0102331]; R. Amowitt, B. Dutta, B. Hu and Y. Santoso, Phys. Lett. B 505 (2001) 177 [arXiv:hep-ph/0102344] S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001) [arXiv:hep-ph/0103067]; H. Baer, C. Balazs, J. Ferrandis and X. Tata, Phys. Rev. D 64, 035004 (2001) [arXiv:hep-ph/0103280].

    Article  ADS  Google Scholar 

  56. N. A. Bahcall, J. P. Ostriker, S. Perlmutter and P. J. Steinhardt, Science 284 (1999) 1481 [arXiv:astro-ph/9906463].

    Article  ADS  Google Scholar 

  57. S. Mizuta and M. Yamaguchi, Phys. Lett. B 298 (1993) 120 [arXiv:hep-ph/9208251]; J. Edsjo and P. Gondolo, Phys. Rev. D 56 (1997) 1879 [arXiv:hep-ph/9704361.

    Article  ADS  Google Scholar 

  58. J. Ellis, T. Falk and K. A. Olive, Phys. Lett. B 444 (1998) 367 [arXiv:hep-ph/9810360]; J. Ellis, T. Falk, K. A. Olive and M. Srednicki, Astropart. Phys. 13 (2000) 181 [arXiv:hep-ph/9905481]; M. E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61 (2000) 123512 [arXiv:hep-ph/9907261] and Phys. Lett. B 487 (2000) 313 [arXiv:hep-ph/0004028]; R. Amowitt, B. Dutta and Y. Santoso, Nucl. Phys. B 606 (2001) 59 [arXiv:hep-ph/0102181].

    Article  ADS  Google Scholar 

  59. M. Drees and M. M. Nojiri, Phys. Rev. D 47 (1993) 376 [arXiv:hep-ph/9207234]; H. Baer and M. Brhlik, Phys. Rev. D 53 (1996) 597 [arXiv:hep-ph/9508321] and Phys. Rev. D 57 (1998) 567 [arXiv:hep-ph/9706509]; H. Baer, M. Brhlik, M. A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and X. Tata, Phys. Rev. D 63 (2001) 015007 [arXiv:hep-ph/0005027]; A. B. Lahanas, D. V. Nanopoulos and V. C. Spanos, Mod. Phys. Lett. A 16 (2001) 1229 [arXiv:hep-ph/0009065].

    Article  ADS  Google Scholar 

  60. J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. Lett. 84, 2322 (2000) [arXiv:hep-ph/9908309]; J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D 61, 075005 (2000) [arXiv:hep-ph/9909334]; J. L. Feng, K. T. Matchev and F. Wilczek, Phys. Lett. B 482, 388 (2000) [arXiv:hep-ph/0004043].

    Article  ADS  Google Scholar 

  61. See, for example: I. Hinchliffe, F. E. Paige, M. D. Shapiro, J. Soderqvist and W. Yao, Phys. Rev. D 55 (1997) 5520; TESLA Technical Design Report, DESY-01-011, Part III, Physics at an e + e - Linear Collider (March 2001).

    Article  ADS  Google Scholar 

  62. M. Battaglia et al., Eur. Phys. J. C 22 (2001) 535 [arXiv:hep-ph/0106204].

    Article  ADS  Google Scholar 

  63. G. L. Kane, J. Lykken, S. Mrenna, B. D. Nelson, L. T. Wang and T. T. Wang, arXiv:hep-ph/0209061.

    Google Scholar 

  64. D. R. Tovey, Phys. Lett. B 498 (2001) 1 [arXiv:hep-ph/0006276].

    Article  ADS  Google Scholar 

  65. F. E. Paige, hep-ph/0211017.

    Google Scholar 

  66. ATLAS Collaboration, ATLAS detector and physics performance Technical Design Report, CERN/LHCC 99-14/15 (1999); S. Abdullin et al. [CMS Collaboration], arXiv:hep-ph/9806366; S. Abdullin and F. Charles, Nucl. Phys. B 547 (1999) 60 [arXiv:hep-ph/9811402]; CMS Collaboration, Technical Proposal, CERN/LHCC 94-38 (1994).

    Google Scholar 

  67. D. Denegri, W. Majerotto and L. Rurua, Phys. Rev. D 60 (1999) 035008.

    Article  ADS  Google Scholar 

  68. TESLA Technical Design Report, DESY-01-011, Part III, Physics at an e + e - Linear Collider (March 2001).

    Google Scholar 

  69. J. Ellis, S. Heinemeyer, K. A. Olive and G. Weiglein, hep-ph/0211206.

    Google Scholar 

  70. J. R. Ellis, G. Ganis and K. A. Olive, Phys. Lett. B 474 (2000) 314 [arXiv:hep-ph/9912324].

    Article  ADS  Google Scholar 

  71. G. A. Blair, W. Porod and P. M. Zerwas, Phys. Rev. D63 (2001) 017703 [arXiv:hep-ph/0007107]; arXiv:hep-ph/0210058.

    ADS  Google Scholar 

  72. R. W. Assmann et al. [CLIC Study Team], A 3-TeVe + e - Linear Collider Based on CLIC Technology, ed. G. Guignard, CERN 2000-08; for more information about this project, see: http://ps-div.web.cern.ch/ps-div/CLIC/Welcome.html.

    Google Scholar 

  73. CLIC Physics Study Group, http://clicphysics.web.cern.ch/CLICphysics/.

    Google Scholar 

  74. For more information about this project, see: http://ctf3.home.cern.ch/ctf3/CTFindex.htm.

    Google Scholar 

  75. M. Battaglia, private communication.

    Google Scholar 

  76. J. Ellis, J. L. Feng, A. Ferstl, K. T. Matchev and K. A. Olive, arXiv:astro-ph/0110225.

    Google Scholar 

  77. DMS Collaboration, R. W. Schnee et al., Phys. Rept. 307, 283 (1998)

    Article  Google Scholar 

  78. CRESST Collaboration, M. Bravin et al., Astropart. Phys. 12, 107 (1999) [arXiv:hep-ex/9904005].

    Article  ADS  Google Scholar 

  79. H. V. Klapdor-Kleingrothaus, arXiv:hep-ph/0104028.

    Google Scholar 

  80. DAMA Collaboration, R. Bernabei et al., Phys. Lett. B 436 (1998) 379.

    Article  ADS  Google Scholar 

  81. G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996) [arXiv:hep-ph/9506380]; http://t8web.lanl.gov/people/jungman/neut-package.html.

    Article  ADS  Google Scholar 

  82. Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998) [arXiv:hep-ex/9807003].

    Article  ADS  Google Scholar 

  83. Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 89 (2002) 011301 [arXiv:nucl-ex/0204008]; Phys. Rev. Lett. 89 (2002) 011302 [arXiv:nucl-ex/0204009].

    Article  ADS  Google Scholar 

  84. R. Barbieri, J. R. Ellis and M. K. Gaillard, Phys. Lett. B 90 (1980) 249.

    Article  ADS  Google Scholar 

  85. M. Gell-Mann, P. Ramond and R. Slansky, Proceedings of the Supergravity Stony Brook Workshop, New York, 1979, eds. P. Van Nieuwenhuizen and D. Freedman (North-Holland, Amsterdam); T. Yanagida, Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba, Japan 1979 (edited by A. Sawada and A. Sugamoto, KEK Report No. 79-18, Tsukuba); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.

    Google Scholar 

  86. P. H. Frampton, S. L. Glashow and T. Yanagida, arXiv:hep-ph/0208157.

    Google Scholar 

  87. T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi and M. Tanimoto, arXiv:hep-ph/0209020.

    Google Scholar 

  88. J. R. Ellis, J. S. Hagelin, S. Kelley and D. V. Nanopoulos, Nucl. Phys. B 311 (1988) 1.

    Article  ADS  Google Scholar 

  89. J. R. Ellis, M. E. Gómez, G. K. Leontaris, S. Lola and D. V. Nanopoulos, Eur. Phys. J. C 14 (2000) 319.

    Article  ADS  Google Scholar 

  90. J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 109 (1976) 213.

    Article  ADS  Google Scholar 

  91. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

    Article  ADS  Google Scholar 

  92. Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

    Article  ADS  Google Scholar 

  93. S. Pukuda et al. [Super-Kamiokande Collaboration], Phys. Lett. B 539 (2002) 179 [arXiv:hep-ex/0205075].

    Article  ADS  Google Scholar 

  94. Chooz Collaboration, Phys. Lett. B 420 (1998) 397.

    Google Scholar 

  95. A. De Rújula, M.B. Gavela and P. Hernández, Nucl. Phys. B547 (1999) 21, hep-ph/9811390.

    Article  ADS  Google Scholar 

  96. A. Cervera et al., Nucl. Phys. B 579, 17 (2000) [Erratum-ibid. B 593, 731 (2001)].

    Article  ADS  Google Scholar 

  97. M. Apollonio et al., Oscillation physics with a neutrino factory, arXiv:hep-ph/0210192; and references therein.

    Google Scholar 

  98. J. A. Casas and A. Ibarra, Nucl. Phys. B 618 (2001) 171 [arXiv:hep-ph/0103065].

    Article  ADS  Google Scholar 

  99. J. R. Ellis, J. Hisano, S. Lola and M. Raidal, Nucl. Phys. B 621, 208 (2002) [arXiv:hep-ph/0109125].

    Article  ADS  Google Scholar 

  100. M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).

    Article  ADS  Google Scholar 

  101. S. Davidson and A. Ibarra, JHEP 0109 (2001) 013.

    Article  ADS  Google Scholar 

  102. J. R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, Phys. Lett. B 528, 86 (2002) [arXiv:hep-ph/0111324].

    Article  ADS  Google Scholar 

  103. J. R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, arXiv:hep-ph/0206110.

    Google Scholar 

  104. J. R. Ellis and M. Raidal, Nucl. Phys. B 643 (2002) 229 [arXiv:hep-ph/0206174].

    Article  ADS  Google Scholar 

  105. A. Masiero and O. Vives, New J. Phys. 4 (2002) 4.

    Article  ADS  Google Scholar 

  106. C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039; Z. Phys. C 29 (1985) 491.

    Article  ADS  Google Scholar 

  107. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66 (2002) 010001.

    Article  ADS  Google Scholar 

  108. R. Cyburt, J. R. Ellis, B. Fields and K. A. Olive, astro-ph/0211258, and references therein.

    Google Scholar 

  109. J. R. Ellis, M. Raidal and T. Yanagida, arXiv:hep-ph/0206300.

    Google Scholar 

  110. Y. Kuno and Y. Okada, Rev. Mod. Phys. 73 (2001) 151; J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Phys. Rev. D 53 (1996) 2442; J. Hisano, D. Nomura and T. Yanagida, Phys. Lett. B 437 (1998) 351; J. Hisano and D. Nomura, Phys. Rev. D 59 (1999) 116005; W. Buchmüller, D. Delepine and F. Vissani, Phys. Lett. B 459 (1999) 171; M. E. Gomez, G. K. Leontaris, S. Lola and J. D. Vergados, Phys. Rev. D 59 (1999) 116009; W. Buchmüller, D. Delepine and L. T. Handoko, Nucl. Phys. B 576 (2000) 445; J. L. Feng, Y. Nir and Y. Shadmi, Phys. Rev. D 61 (2000) 113005; J. Sato and K. Tobe, Phys. Rev. D 63 (2001) 116010; J. Hisano and K. Tobe, Phys. Lett. B 510 (2001) 197; D. Carvalho, J. Ellis, M. Gomez and S. Lola, Phys. Lett. B 515 (2001) 323; S. Baek, T. Goto, Y. Okada and K. Okumura, hep-ph/0104146; S. Lavignac, I. Masina and C.A. Savoy, hep-ph/0106245.

    Article  ADS  Google Scholar 

  111. Y. Okada, K. Okumura and Y. Shimizu, Phys. Rev. D 58 (1998) 051901; Phys. Rev. D 61 (2000) 094001.

    Article  ADS  Google Scholar 

  112. T. Ibrahim and P. Nath, Phys. Rev. D 57 (1998) 478 [Erratum — ibid. 58 (1998) 019901]; S. Abel, S. Khalil and O. Lebedev, Nucl. Phys. B 606 (2001) 151; S. Abel, D. Bailin, S. Khalil and O. Lebedev, Phys. Lett. B 504 (2001) 241.

    Article  ADS  Google Scholar 

  113. B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88 (2002) 071805.

    Article  ADS  Google Scholar 

  114. S. K. Lamoreaux, arXiv:nucl-ex/0109014.

    Google Scholar 

  115. M. Furusaka et al., JAERI/KEK Joint Project Proposai The Joint Project for High-Intensity Proton Accelerators, KEK-REPORT-99-4, JAERI-TECH-99-056.

    Google Scholar 

  116. J. Äystö et al., Physics with Low-Energy Muons at a Neutrino Factory Complex, CERN-TH/2001-231, hep-ph/0109217; and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ellis, J. (2003). The Supersymmetric Universe. In: Prosper, H.B., Danilov, M. (eds) Techniques and Concepts of High-Energy Physics XII. NATO Science Series, vol 123. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0076-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0076-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1591-5

  • Online ISBN: 978-94-010-0076-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics