Skip to main content

Hamiltonian Description of Fluid and Plasma Systems with Continuous Spectra

  • Chapter
Nonlinear Processes in Geophysical Fluid Dynamics

Abstract

We show how to transform a large class of infinite degree-of-freedom Hamiltonian systems into normal form. The energy-Casimir method that is widely used for ascertaining stability in Hamiltonian fluid and plasma systems is only the first step. A complete description involves changing to coordinates in which the energy is diagonal. This amounts to a transformation to action-angle variables. Because fluid and plasma systems typically have a continuous eigenspectrum, this transformation is nontrivial. It will be shown that a family of integral transforms, which is a generalization of the Hilbert transform, yields action-angle variables for a large class of fluid and plasma systems.

In memory of Pedro Ripa 1946–2001

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnol’d, V. Conditions for Nonlinear Stability of Stationary Plane Curvilinear Flows of an Ideal Fluid. Soviet Math. Dokl., 6:773–777, 1965.

    Google Scholar 

  • Balmforth, N. J., D. del-Castillo-Negrete, and W. R. Young. Dynamics of Vortical Defects in Shear. J. Fluid Mech., 333:197–230, 1996.

    Article  Google Scholar 

  • Balmforth, N. J. and P. J. Morrison. A Necessary and Sufficient Instability Condition for Inviscid Shear Flow. Studies in Appl. Math., 102:309–344, 1998.

    Article  Google Scholar 

  • Balmforth, N. J. and P. J. Morrison. Hamiltonian Description of Shear Flow. In J. Nor-bury and I. Roulstone, editors, Large-Scale Atmosphere-Ocean Dynamics II, pages 117–142. Cambridge, Cambridge, 2002.

    Google Scholar 

  • Birkhoff, G. D. Dynamical Systems. American Mathematical Society Colloquium Publication IX, Providence, Rhode Island, 1927.

    Google Scholar 

  • Hammerstein, A. Nichtlineare Integralgleichungen nebst Anwendungen. Acta Math., 54:117–176, 1930.

    Article  Google Scholar 

  • Hille, E. Ordinary Differential Equations in the Complex Domain. Wiley, New York, 1976.

    Google Scholar 

  • Holm, D. D., J. E. Marsden, T. S. Ratiu, and A. Weinstein. Nonlinear Stability of Fluid and Plasma Equilibria. Phys. Rep., 82:1–116, 1985.

    Article  Google Scholar 

  • Illner, R. Stellar Dynamics and Plasma Physics with Corrected Potentials: Vlasov, Manev, Boltzmann, Smoluchowski. Fields Inst. Comm., 27:98–108, 2000.

    Google Scholar 

  • Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966.

    Google Scholar 

  • Krein, M. G. A Generalization of Some Investigations on Linear Differential Equations with Periodic Coefficients. Dokl. Akad. Nauk SSSR A, 73:445–448, 1950.

    Google Scholar 

  • Krein, M. G. and V. A. Jakubovič. Four Papers on Ordinary Differential Equations. American Mathematical Society, Providence, Rhode Island, 1980.

    Google Scholar 

  • Kruskal, M. D. and C. Oberman. On the Stability of Plasma in Static Equilibrium. Phys. Fluids, 1, 275–280, 1958.

    Article  Google Scholar 

  • Marsden, J. E. and T. Ratiu. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics vol. 17, 2nd edition, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  • Morrison, P. J. and S. Eliezer. Spontaneous Symmetry Breaking and Neutral Stability in the Noncanonical Hamiltonian Formalism. Phys. Rev., 33A:4205–4214, 1986.

    Google Scholar 

  • Morrison, P. J. Hamiltonian Description of the Ideal Fluid. Rev. Mod. Phys., 70:467–521, 1998.

    Article  Google Scholar 

  • Morrison, P. J. Hamiltonian Description of Vlasov Dynamics: Action-Angle Variables for the Continuous Spectrum. Trans. Theory and Stat. Phys., 29:397–414, 2000.

    Article  Google Scholar 

  • Morrison, P. J. and D. Pfirsch. Dielectric Energy Versus Plasma Energy, and Action-Angle Variables for the Vlasov Equation. Phys. Fluids B, 4:3038–3057, 1992.

    Article  Google Scholar 

  • Morrison, P. J. and B. Shadwick. Canonization and Diagonalization of an Infinite Dimensional Noncanonical Hamiltonian System: Linear Vlasov Theory. Acta Phys. Pol., 85:759–769, 1994.

    Google Scholar 

  • Moser, J. K. New Aspects in the Theory of Stability of Hamiltonian Systems. Comm. Pure Appl. Math., 11:81–114, 1958.

    Article  Google Scholar 

  • Moser, J. K. Three Integrable Hamiltonian Systems Connected with Isospectral Deformations. Adv. Math., 16:197–220, 1975.

    Article  Google Scholar 

  • Rayleigh, J. W. S. Theory of Sound. Art. 369. Macmillan, London, 1896.

    Google Scholar 

  • Reed, M. and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York, 1980.

    Google Scholar 

  • Riesz, F. and B. Sz.-Nagy. Functional Analysis. Frederick Ungar Publishing, New York, 1955.

    Google Scholar 

  • Ripa, P. General Stability Conditions for Zonal Flows in a One-Layer Model on the Beta-Plane or the Sphere. J. Fluid Mech., 126:463–489, 1983.

    Article  Google Scholar 

  • Shepherd, T. G. Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics. Adv. Geophs., 32:287–338, 1990.

    Article  Google Scholar 

  • Smereka, P. Synchronization and Relaxation for a Class of Globally Coupled Hamiltonian Systems. Physica, 124D:104–125, 1998.

    Google Scholar 

  • Stein, E.M. and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Jersey, 1971.

    Google Scholar 

  • Van Kampen, N. G. On the Theory of Stationary Wave s in Plasmas. Physica, 21:949–963, 1955.

    Article  Google Scholar 

  • Williamson, J. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems. Am. J. Math., 58:141–163, 1936.

    Article  Google Scholar 

  • Wirosoetisno, D. and T. G Shepherd, Averaging, Slaving and Balance Dynamics in a Simple Atmospheric Model. Physica, 141D:37–53, 2002.

    Google Scholar 

  • Yudichak, T. W. Hamiltonian Methods in Weakly Nonlinear Vlasov-Poisson Dynamics. PhD thesis, Physics Department, The University of Texas at Austin, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morrison, P.J. (2003). Hamiltonian Description of Fluid and Plasma Systems with Continuous Spectra. In: Velasco Fuentes, O.U., Sheinbaum, J., Ochoa, J. (eds) Nonlinear Processes in Geophysical Fluid Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0074-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0074-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3996-3

  • Online ISBN: 978-94-010-0074-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics