Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 122))

Abstract

The formation of carbon-carbon bonds using free radicals is of utmost importance both in synthetic organic chemistry and in polymer chemistry [1]. The developments that took place during the last decade have considerably modified the view that free radical reactions are commonly uncontrollable. Catalytic systems are now available, that allow radical reactions to be carried out in a precise and controlled manner. In particular, the past few years have witnessed a rapid growth in the development and understanding of controlled radical reactions based on the combination of suitable radical initiators and of transition-metal complexes. For instance, the addition of a polyhalogenated alkane to an olefin, also known as the Kharasch reaction [2], has largely benefited from the replacement of classical radical initiators such as peroxides or UV light by transition- metal complexes that promote a single-electron transfer or a redox-based chain reaction. The latter process is usually referred to as an Atom Transfer Radical Addition (ATRA). In the presence of a high ratio of olefin compared to the halogen derivative, successive insertions of the unsaturated monomer lead to a macromolecular chain, and the net process is known as an Atom Transfer Radical Polymerization (ATRP) (Scheme 1). Among the metals used for promoting ATRP, copper, nickel, iron, and ruthenium tend to display the highest activities, but complexes of rhenium, rhodium, and palladium have also been employed [[3],[4]].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Renaud, P. and Sibi, M. P. (eds.) (2001) Radicals in Organic Synthesis, Wiley-VCH, Weinheim.

    Google Scholar 

  2. Kharasch, M.S., Jensen, E.V., and Urry, W.H. (1945) Addition of carbon tetrachloride and chloroform to olefins, Science 102, 128.

    Article  CAS  Google Scholar 

  3. Matyjaszewski, K. and Xia, J. (2001) Atom transfer radical polymerization, Chem. Rev. 101, 2921–2990.

    Article  CAS  Google Scholar 

  4. Kamigaito, M., Ando, T., and Sawamoto, M. (2001) Metal-catalyzed living radical polymerization, Chem. Rev. 101, 3689–3746.

    Article  CAS  Google Scholar 

  5. Ivin, K.J. and Mol, J.C. (1997) Olefin metathesis and metathesis polymerization, Academic Press, San Diego.

    Google Scholar 

  6. Schuster, M. and Blechert, S. (1997) Olefin metathesis in organic chemistry, Angew. Chem., Int. Ed. 36, 2036–2056.

    Article  Google Scholar 

  7. Fürster, A. (2000) Olefin metathesis and beyond, Angew. Chem., Int. Ed. 39, 3012–3043.

    Article  Google Scholar 

  8. Rouhi, A.M. (2002) Olefin metathesis: big-deal reaction, Chem. Eng. News December 23, 29–33.

    Google Scholar 

  9. Simal, F., Demonceau, A., and Noels, A.F. (1999) Atom transfer radical addition (ATRA) versus atom transfer radical polymerization (ATRP) catalysed by ruthenium complexes, Recent Res. Devel. Org. Chem. 3, 455–464.

    CAS  Google Scholar 

  10. Frenzel, U. and Nuyken, O. (2002) Ruthenium-based metathesis initiators: development and use in ring-opening metathesis polymerization, J. Polym. Sci., Part A: Polym. Chem. 40, 2895–2916.

    Article  CAS  Google Scholar 

  11. Schwab, P., France, M.B., Ziller, J.W., and Grubbs, R.H. (1995) A series of well-defined metathesis catalysts-Synthesis of [RuCl2(=CHR’)(PR3)2] and its reactions, Angew. Chem., Int. Ed. Engl. 34, 2039–2041.

    Article  CAS  Google Scholar 

  12. Trnka, T.M. and Grubbs, R.H. (2001) The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story, Acc. Chem. Res. 34, 18–29.

    Article  CAS  Google Scholar 

  13. Stumpf, A.W., Saive, E., Demonceau, A., and Noels, A.F. (1995) Ruthenium-based catalysts for the ring-opening metathesis polymerisation of low-strain cyclic olefins and of functionalised derivatives of norbornene and cyclooctene, Chem. Commun. 1127–1128.

    Google Scholar 

  14. Demonceau, A., Stumpf, A.W., Saive, E., and Noels, A.F. (1997) Novel ruthenium-based catalyst systems for the ring-opening metathesis polymerization of low-strain cyclic olefins, Macromolecules 30, 3127–3136.

    Article  CAS  Google Scholar 

  15. Simal, F., Demonceau, A., and Noels, A.F. (1999) Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers, Angew. Chem., Int. Ed. Engl. 38, 538–540.

    Article  CAS  Google Scholar 

  16. Herrmann, W.A. (2002) N-heterocyclic carbenes: a new concept in organometallic catalysis, Angew. Chem., Int. Ed. 41, 1290–1309.

    Article  CAS  Google Scholar 

  17. Bourissou, D., Guerret, O., Gabbaï, F.P., and Bertrand, G. (2000) Stable carbenes, Chem. Rev. 100, 39–91.

    Article  CAS  Google Scholar 

  18. Simal, F., Delfosse, S., Demonceau, A., Noels, A.F., Denk, K., Kohl, F.J., Weskamp, T., and Herrmann, W.A. (2002) Ruthenium alkylidenes: modulation of a new class of catalysts for controlled radical polymerization of vinyl monomers, Chem. Eur. J. 8, 3047–3052.

    Article  CAS  Google Scholar 

  19. Richel, A., Delfosse, S., Cremasco, C., Delaude, L., Demonceau, A., and Noels, A.F. (2003) Ruthenium catalysts bearing N-heterocyclic carbene ligands in Kharasch chemistry, manuscript in preparation.

    Google Scholar 

  20. Delaude, L., Delfosse, S., Richel, A., Demonceau, A., and Noels, A.F. (2003) Tuning of ruthenium N-heterocyclic carbene catalysts for ATRP, manuscript submitted for publication.

    Google Scholar 

  21. Delaude, L., Demonceau, A., and Noels, A.F. (2001) Visible light induced ring-opening metathesis polymerisation of cyclooctene, Chem. Commun. 986–987.

    Google Scholar 

  22. Delaude, L., Szypa, M., Demonceau, A., and Noels, A.F. (2002) New in situ generated ruthenium catalysts bearing N-heterocyclic carbene ligands for the ring-opening metathesis polymerization of cyclooctene, Adv. Synth. Catal. 344, 749–756.

    Article  CAS  Google Scholar 

  23. Herrmann, W.A., Köcher, C., Goossen, L.J., and Artus, G.R.J. (1996) Heterocyclic carbenes: a high-yielding synthesis of novel, functionalized N-heterocyclic carbenes in liquid ammonia, Chem. Eur. J. 2, 1626–1636.

    Google Scholar 

  24. Jafarpour, L., Huang, J., Stevens, D., and Nolan, S.P. (1999) (p-cymene)RuLCl2 (L = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and related complexes as ring closing metathesis catalysts, Organometallics 18, 3760–3763.

    Article  CAS  Google Scholar 

  25. Kuhn, N. and Kratz, T. (1993) Synthesis of imidazol-2-ylidenes by reduction of imidazole-2(3H)-thiones, Synthesis 561–562.

    Google Scholar 

  26. Arduengo, A.J., III, Krafczyk, R., Schmutzler, R., Craig, H.A., Goerlich, J.R., Marshall, W.J., and Unverzagt, M. (1999) Imidazolylidenes, imidazolinylidenes and imidazolidines, Tetrahedron 55, 14523–14534.

    Article  CAS  Google Scholar 

  27. Arduengo, A.J., III, Davidson, F., Dias, H.V.R., Goerlich, J.R., Khasnis, D., Marshall, J., and Prakasha, T.K. (1997) An air stable carbene and mixed carbene “dimers”, J. Am. Chem. Soc. 119, 12742–12749.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Delaude, L., Delfosse, S., Demonceau, A., Richel, A., Noels, A.F. (2003). Dual Activity of Ruthenium Catalysts in Controlled Radical Reactions and Olefin Metathesis. In: Imamoglu, Y., Bencze, L. (eds) Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymers and Advanced Material Applications. NATO Science Series, vol 122. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0066-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0066-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1571-7

  • Online ISBN: 978-94-010-0066-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics