Advertisement

Location of Charge-Compensating Vacancy in Ionic Crystals Doped with Rare Earth Ions

In Case of Cubic Perovskite KMgF3 Doped with Eu2+ Ions
  • T. Tsuboi
Conference paper
Part of the NATO Science Series book series (NAII, volume 126)

Abstract

Optical study on Eu2+ ions in KMgF3 crystal is reviewed. Eu2+ ions are substituted for monovalent K+ ions in KMgF3 crystal, resulting in creation of charge-compensating K+ vacancies. Spectroscopic study and electron paramagnetic resonance study have been undertaken to determine the position of Eu2+ ions and vacancies. Two-photon excitation speclroscopy indicates coexistence of Eu2+ ions with site symmetries of cubic, C3v, C4v and C2v, which are created depending on location of vacancy. It is suggested that, of three positively-charged ions K+, Eu2+ and Mg2+ which attract the negatively charged vacancy, the vacancy has Coulomb interaction with not only Eu2+ but also the same divalent Mg2+, giving rise to frustration to vacancy in selecting the location and resulting in various locations of vacancy. This suggestion is confirmed to be reasonable by comparing with the cases of Eu2+ doped KC1 and Ce3+doped KMgF3.

Keywords

Crystal Field Electron Paramagnetic Resonance Study Site Symmetry Broad Emission Band Excitation Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasse, G. and Grabmaier, B.C (1994) Luminescent Materials, Springer, Heidelberg.CrossRefGoogle Scholar
  2. 2.
    Tsuboi, T. and Scacco, A. (2000) Observation of absorption bands due to the 4f7→4f7 parity-forbidden transitions of Eu2+ in KMgF3 crystals, J. Phys. Cond Matter 10, 7259–7266.CrossRefGoogle Scholar
  3. 3.
    Seo, H.J., Moon, B.K. and Tsuboi, T. (2000) Two-photon excitation spectroscopy of 4f7→4f7 transitions in Eu2+ ions doped in KMgF3 crystal, Phys. Rev. B 62, 12688–12695.CrossRefGoogle Scholar
  4. 4.
    Crosswhite, H.M. and Moos, H.W. (1967) Optical Properties of Ions in Crystals, Interscience Publishers, N.Y. vii., Huefner, S. (1978) Optical Spectra of Transparent Ram Earn Compounds, Academic Press, N.Y.Google Scholar
  5. 5.
    Camall, W.T., Feids, P.R. and Rajnak, K. (1968) Electronic energy levels of the trivalent lanthanide aquo ions. II Gd3+ J. Chem Phys. 49, 4443–4446.CrossRefGoogle Scholar
  6. 6.
    Tsuboi, T. (1998) Absorption spectra due to the 4f7→4f7 transitions of Gd3+ ions in GdAl3(BO3)4crystals, J. Phys. Cond Matter 10, 9155–9159.CrossRefGoogle Scholar
  7. 7.
    Kundu, L., Banerjee, A.K and Chowdhury, M. (1991) Two-photon absorption spectrum of gadolinium elpasolite, Chem Phys. Lett. 181, 569–574.CrossRefGoogle Scholar
  8. 8.
    Schwiesow, R.L and Crosswhite, HM. (1969) Energy levels of Gd3+ in five hexagonal crystals, J. Opt Soc. Am 59, 592–602.CrossRefGoogle Scholar
  9. 9.
    Schwiesow, R.L. and Crosswhite, H.M. (1969) Energy levels of Gd3+ in LaF3, J. Opt. Soc. Am 59, 602–610.CrossRefGoogle Scholar
  10. 10.
    Piksis, AH., Dieke, G.H and Crosswhite, H.M. (1967) Energy levels and crystal field of LaCl3Gd3+, J. Chem Phys. 47, 5083–5089.CrossRefGoogle Scholar
  11. 11.
    Detrio, J.S., Ferralli, M.W. and Yaney, P.P. (1970) Concentration study determination of the 6P, 6L and 6D energy levels of Gd3+in SrF2at a C4vsite, J. Chem Phys. 53, 4372–4377.CrossRefGoogle Scholar
  12. 12.
    Downer, M.C. and A. Bivas, A. (1983) Third-and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution, Phys. Rev. B 28, 3677–3696.Google Scholar
  13. 13.
    Bouazaoui, M., Jacquier, B., Linares, C. and Strek, W. (1991) Two-photon transitions of Gd3+ in cubic Cs3NaGdCl6, J. Phys.:Cond Matter 3, 921–926.CrossRefGoogle Scholar
  14. 14.
    Wegh, R.T., Donker, H., Meijerink, A, Lamminmaki, R.J. and Holsa, J. (1997) Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4 Phys. Rev. B 56, 13841–13848.Google Scholar
  15. 15.
    Szczurek, T. and Schlesinger, M. (1984) Rare Earths Spectroscopy, in B. Jezowska-Trzebiatowska, J. Legendziewicz and W. Strek (eds), World Scientific Publ, Singapore, 309.Google Scholar
  16. 16.
    Bouazaoui, M., Jacquier, B., Linares, C. and Strek, W. (1991) Two-photon transitions of Gd3+ in cubic Cs2NaGdCl6, J. Phys.: Cond Matter 3, 921–926.CrossRefGoogle Scholar
  17. 17.
    Rubio, OJ. (1991) Doubly-valent rare-earth ions in halide crystals, J. Phys. Chem Solids 52, 101–174.CrossRefGoogle Scholar
  18. 18.
    Alcala, A., Saidar, D.K. and Sibley, W.A. (1982) Optical transitions of Eu2+ ions in RbMgF3 crystals, J. Lumin. 27, 273–284.CrossRefGoogle Scholar
  19. 19.
    Median, J.P. and Wilson, E.J. (1972) Single crystal growth and characterization of SrAIF3 and SrEuAlF5, J. Cryst. Growth 15, 141–147.CrossRefGoogle Scholar
  20. 20.
    Hewesand, R.A and Hoffman, M.V. (1971) J. Lumin 3, 261.CrossRefGoogle Scholar
  21. 21.
    Spoonhower, J.P. and Burberry, M.S. (1989) Time-resolved spectroscopy of BaFBnEu2+, J. Lumin, 43, 221–226.CrossRefGoogle Scholar
  22. 22.
    Kobayashi, T., Mnoczkowski, S., Owen, JP. and Brixner, L.H. (1980) Fluorescence lifetime and quantum efficiency for 5d→4f transitions in Eu2+ doped chloride abd fluoride crystals, J. Lumin. 21, 247–257.CrossRefGoogle Scholar
  23. 23.
    Tsuboi, T. and Silfsten, P. (1991) The lifetime of Eu2+-fluorescence in CaF2crystals, J. Phys.: Cond Matter 3, 9163–9167.CrossRefGoogle Scholar
  24. 24.
    Blasse, G. (1978) Luminescence of Inorganic Solids, in B. Di Bartolo (ed.), Plenum Press, N.Y., 457–472.CrossRefGoogle Scholar
  25. 25.
    Poort, S.H.M. and Blasse, G. (1997) The influence of the host lattice on the luminescence of divalent europium, J. lumin 72-74, 247–249.CrossRefGoogle Scholar
  26. 26.
    Meijerink, A., Nuyten, J., and Blasse, G. (1989) Luminescence and energy nigrtion in (Sr,Eu)B4O7, J. Lumin 44, 19–31.CrossRefGoogle Scholar
  27. 27.
    Ellens, A, Meijerink, A., and Blasse, G. (1994) 6I emission and vihraonic trasnsition of Eu2+ in KMgF3, J Lumin, 59, 293–301; Ellens, A, Meijerink, A. and Blasse, G. (1994) The first observation of 6I → 8S emission from Eu2+ in KMgF3, J. Lumin, 60/61, 70-73.CrossRefGoogle Scholar
  28. 28.
    Francini, R Grassano, UM., Tomini, M., Boiko, S., Tarasov, G.G. and Scacco, A. (1997), Phys. Rev. B 55, 7579–7595.Google Scholar
  29. 29.
    Casalboni, M., Francini, R., Grassano, UM., and Pizzoferrato, R. (1986) Two-photon spectroscopy in KCl:Eu2+, Phys. Rev. B 34, 2936–2938.Google Scholar
  30. 30.
    Casalboni, M, Francini, R, Grassano, UM., and Pizzoferrato, R (1987) Two-photon spectroscopy in Eu2+ doped alkali halides, Cryst Lattice Deffect Amorph. Mat. 16, 261–267.Google Scholar
  31. 31.
    Downer, M.C., Cordero-Montalvo, CD. and Crosswhite, H. (1983) Study of new 4f7 levels of Eu2+ in CaF2 and SrF2 using two-photon absorption spectroscopy, Phys. Rev. B 28, 4931–4943.Google Scholar
  32. 32.
    Francini, R (1997) Spectroscopy of rare earth ions in Insulating materials, SPIE Proc. 3176, 2–11.CrossRefGoogle Scholar
  33. 33.
    Bellatreccia, M., Casalboni, M., Francini, R., and Grassano, U.M (1991) Even-parity excited stales of Agcenters in alkali halides, Phys Rev. B43, 2334–2338.Google Scholar
  34. 34.
    Altshuler, N.S., Livanova, L.D., and Stolov, A.L. (1974) Spectra of f-f transitions of the Eu2+ ion in KMgF3, Opt. Spectmsc. 36, 72–75.Google Scholar
  35. 35.
    Altshuler, N.A, Ivoilova, E.Kh., livanova, L.D., Stepanov, V.G., and Stolov, A.L (1974) Many-center structureoftheESRspectraofKMgF3 and KZnF3 crystals activated with Eu2+and Gd3+ ions, Phys. Solid State. 15, 1973–1975.Google Scholar
  36. 36.
    Meijerink, A. (1993) Spectroscopy and vibronic transitions of divalent europium in LiBaF3, J. Lumin. 55, 125–138.CrossRefGoogle Scholar
  37. 37.
    Altshuler, N.S., Korableva, S.L., livanova, L.D. and Stolov, AL. (1974) ESR and optical spectra of Eu2+ ion in LiBaF3, Phys. Solid State 15, 2155–2157.Google Scholar
  38. 38.
    Nunes, LAO., Matinaga, FM and Castro, J.C. (1985) Two-photon spectroscopy in Eu2+ ions in KCI and KI, Phys. Rev. B32, 8356–8360.Google Scholar
  39. 39.
    Dujardin, C., Moine, B. and Pedrini, C. (1993) One-and two-photon spectroscopy of f→d and f→f transitions of Eu2+ ions in M1-xNxF2 mixed fluoride crystals (M,N = Ba, Sr, Ca), J. Lumin 54, 259–270.CrossRefGoogle Scholar
  40. 40.
    Francini, R, Grassano, U.M., Landi, L., Scacco, A D' Elena, M., Nikl, M., Cechova, N. and Zema, N. (1997) Ce3+ luminescent centers of different symmetries in KMgF3 single crystals, Phys. Rev. B 56, 15109–15114.Google Scholar
  41. 41.
    Yamaga, M., Honda, M., Kawamata, N., Fujita, T., Shimamura, K., and Fukuda, T. (2001) Site symmetry and crystal field of Ce3+ luminescent centers in KMgF3, J Phys. Cond Matter 13, 3461–3473.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • T. Tsuboi
    • 1
  1. 1.Faculty of EngineeringKyoto Sangyo UniversityKamigamo, Kita-ku, KyotoJapan

Personalised recommendations