Skip to main content

Land Surface Processes

  • Conference paper
Data Assimilation for the Earth System

Part of the book series: NATO Science Series ((NAIV,volume 26))

  • 317 Accesses

Abstract

Through their regulation of water and energy transfer between the land and atmosphere, the dynamics of terrestrial water stores are an important boundary condition for the global water cycle at weather and climate timescales. The basis for a concerted integrated research effort is now provided by breakthroughs in techniques to observe: (1) global and regional precipitation, (2) surface soil-moisture, (3) snow, (4) surface soil freezing and thawing, (5) surface inundation, (6) river flow, and (7) total terrestrial water-storage changes, combined with better estimates of evaporation. As the primary input of water to the land surface, precipitation defines the terrestrial water cycle. The partitioning of this precipitation between infiltration (and subsequently evapotranspiration) and runoff is determined by surface physics, vegetation, snow and soil-moisture conditions, and soil-moisture dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achutuni, R., and R A. Scofield, 1997: The spatial and temporal variability of the DMSP SSM/I global soil wetness index. AMS Annual Meeting, Proceedings of the l3th Conference on Hydrology, 188–189.

    Google Scholar 

  • Arkin, P.A., and B.N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Mon. Weather Rev., 115, 51–74.

    Article  Google Scholar 

  • Avissar, R., and R Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Weather Rev., 117, 2113–2136.

    Article  Google Scholar 

  • Basist, A., and N. Grody, 1997: Surface wetness and snow cover. AMS Annual Meeting Proceedings of the 13th Conference on Hydrology, 190–193.

    Google Scholar 

  • Beven, K., and M. Kirkby, 1979: A physically-based variable contributing area model of basin hydrology. Hydrol. Sci. J., 24, 43–69.

    Article  Google Scholar 

  • Birkett, C. M., 1995: The contribution of the TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res., 100, 25179–25204.

    Article  Google Scholar 

  • Birkett, C. M., 1998: Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Wat Resour. Res., 34, 1223–1239.

    Article  Google Scholar 

  • Bonan, G.B., 1996: A land surface model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical description and user’s guide. NCAR Technical Note NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, Colorado, 150pp.

    Google Scholar 

  • Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A. Betts, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 101, 7251–7268.

    Article  Google Scholar 

  • Cline, D. W., R C. Bales and J. Dozier, 1998: Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Wat. Resour. Res., 34, 1275–1285.

    Article  Google Scholar 

  • Dai Y., and Q.-C. Zeng, 1997: A land surface model (IAP94) for climate studies, Part I: formulation and validation in off-line experiments. Advance Atmospheric Sciences 14, 433–460.

    Article  Google Scholar 

  • Dickinson, R.E., A. Henderson-Sellers, P.J. Kennedy, and M.F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note: NCAR/TN-275+STR, p. 69.

    Google Scholar 

  • Dickinson, R E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note 387+STR

    Google Scholar 

  • Dubayah, R., D. P. Lettenmaier, K. Czajkowski, and G. O’Donnell, 1997: The Use of Remote Sensing in Land Surface Modeling Presented at the American Geophysical Union Spring Meeting Baltimore.

    Google Scholar 

  • Eley, J., 1992: Summary of Workshop, Soil Moisture Modeling. Proceedings of the NHRC Workshop held March 9–10, 1992, NHRI Symposium Proceedings 9.

    Google Scholar 

  • Engman, E. T., 1995: Recent Advances in Remote Sensing in Hydrology. Reviews of Geophysics, Supplement, 961–915.

    Google Scholar 

  • Famiglietti, J. S., and E. F. Wood, 1991: Evapotranspiration and Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric General Circulation Models. Surveys in Geophysics, 12, 179–204.

    Article  Google Scholar 

  • Famiglietti, J. S. and E. F. Wood, 1994: Multi-Scale Modeling of Spatially-Variable Water and Energy Balance Processes. Wat. Resour. Res., 30, 3061–3078.

    Article  Google Scholar 

  • Georgakakos, K.P., and Smith, G.F., 1990: On improved hydrologic forecasting — Result from a WMO real time forecasting experiment J. Hydrol., 114, 17–45.

    Article  Google Scholar 

  • Graham, S. T., J. S. Famiglietti, and D. R Maidment, 1999: 5-Minute, 1/2 Degree and 1-Degree Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologie and Climate System Modeling Studies. Wat. Resour. Res., 35, 583–587.

    Article  Google Scholar 

  • Henderson-Sellers, A., Z.-L Yang, and R E. Dickinson, 1993: The Project for Intercomparison of Land-surface Parameterization Schemes, Bull. Amer. Meteorol.. Soc., 74, 1335–1349.

    Article  Google Scholar 

  • Houser, P., E. Douglass, R Yang, and A. Silva, 1999: Merging Precipitation Observations with Predictions to Develop a Spatially & Temporally Continuous 3-hour Global Product GEWEX Conference, Beijing China.

    Google Scholar 

  • Jackson, T. J., 1997a: Southern Great Plains 1997 (SGP97) Hydrology Experiment Plan, http://hydrolab.rsusda.gov/~tjackson.

    Google Scholar 

  • Jackson, T. J., 1997b: Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Wat. Resour. Res., 33, 1475–1484.

    Article  Google Scholar 

  • Koster, R D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 2697–2715.

    Article  Google Scholar 

  • Koster, R D., M. J. Suarez, A. Duchame, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM, Part 1, Model Structure, J. Geophys. Res., 105, 24809–24822.

    Article  Google Scholar 

  • Koster, R D., and P. C. D. Milly, 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10, 1578–1591.

    Article  Google Scholar 

  • Olivera, F., J. S. Famiglietti, and K. Asante, 2000: Global-Scale How Routing Using a Source-to-Sink Algorithm. Wat Resour. Res., 36, 2197–2207.

    Article  Google Scholar 

  • Robinson, D., Bevins, R.E., and G. Rowbotham, 1993: The characterization of mafic phyllosilicates in low-grade metabasalts from eastern North Greenland. American Mineralogist,78, 377–390.

    Google Scholar 

  • Rodell, M., and J. S. Famiglietti, 1999: Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Wat Resour. Res., 35, 2705–2723.

    Article  Google Scholar 

  • Rosenthal, C. W., and J. Dozier, 1996: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper, Wat. Resour. Res., 32, 115–130.

    Article  Google Scholar 

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A Dalcher, 1986: A simple biosphere model (SiB) for use with general circulation models. J. Atmos. Sci., 43, 505–531.

    Google Scholar 

  • Sipple, S., S. Hamilton, J. Melak, and B. Choudhury, 1994: Determination of inundation area in the Amazon river flood plain using SMMR 37 GHz polarization difference. Remote Sensing Environment, 48, 70–76.

    Article  Google Scholar 

  • Wahr, J.;, M. Molenaar, and F. Bryan, 1998: Time variablity of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30205–30229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Houser, P.R. (2003). Land Surface Processes. In: Swinbank, R., Shutyaev, V., Lahoz, W.A. (eds) Data Assimilation for the Earth System. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0029-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0029-1_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1593-9

  • Online ISBN: 978-94-010-0029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics