Skip to main content

Atmospheric Modelling

  • Conference paper
Data Assimilation for the Earth System

Part of the book series: NATO Science Series ((NAIV,volume 26))

  • 310 Accesses

Abstract

Numerical models play a key role in data assimilation for the Earth System, since they are the means by which information from observations is organised and summarised. To do the best possible job, data assimilation systems are built on state-of-the-art models that embody our understanding of how the Earth System evolves, i.e., the physical laws governing its behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.R., and L.A. Smith, 1996: Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Clim., 9, 3373–3404.

    Article  Google Scholar 

  • Andrews, D.G., J. R. Holton, and C.R. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, London.

    Google Scholar 

  • Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Comput. Phys., 17, 173–265.

    Google Scholar 

  • Austin, J., 2002: A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends. J. Atmos. Sci., 59, 218–232.

    Article  Google Scholar 

  • Cullen, M.J.P., 1993: The unified forecast/climate model. Meteorol. Mag., 122, 81–94.

    Google Scholar 

  • Dameris, M., V. Grewe, R. Hein, C. Schnadt, C. Brühl, and B. Steil, 1998: Assessment of the future development of the ozone layer. Geophys. Res. Lett., 25, 3579–3582.

    Article  Google Scholar 

  • Durran, D.R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, New York.

    Book  Google Scholar 

  • Haltiner, G.J., and T.R. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley & Sons, New York.

    Google Scholar 

  • Hamilton, K. (Ed.), 1996: Gravity wave processes and their parametrization in global climate models. Springer-Verlag.

    Google Scholar 

  • Houghton, J.T., L.G. Meira Filho, J. Bruce, Hoesung Lee, B.A. Callander, E. Haites, N. Harris, and K. Maskell K. (Eds.), 1995: Climate change 1994: Radiative forcing of climate change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lorenz, E.N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.

    Article  Google Scholar 

  • Phillips, T.J., 1994: A Summary Documentation of the AMIP Models. PCMDI Report No 118.

    Google Scholar 

  • Rind, D., D. Shindell, P. Lonergan, and N.K. Balachandran, 1998: Climate change and the middle atmosphere: Part III, The doubled CO2 climate revisited. J. Clim., 11, 876–894.

    Article  Google Scholar 

  • Santer, B.D., K.E. Taylor, T.M.L. Wigley, T.C. Johns, P.D. Jones, D.J. Karoly, J.F.B. Mitchell, A.H. Oort, J.E. Penner, V. Ramaswamy, M.D. Schwarzkopf, R.J. Stouffer, and S.F.B. Tett, 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39–46.

    Article  Google Scholar 

  • Scaife, A.A., N. Butchart, C.D. Warner, D. Stainforth, W. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27, 3481–3484.

    Article  Google Scholar 

  • Simmons, A.J., A. Untch, C. Jakob, P. KÃ¥llberg, and P. Undén, 1999: Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Q. J. R. Meteorol. Soc., 125, 353–386.

    Article  Google Scholar 

  • Staniforth, A.N., and J. Côte, 1991: Semi-Lagrangian integration schemes for atmospheric models — A review. Mon. Weather Rev., 119, 2206–2223.

    Article  Google Scholar 

  • Tett, S.F.B., P.A. Stott, M.R. Allen, W.J. Ingram, and J.F.B. Mitchell, 1999: Causes of twentieth-century temperature changes near the Earth’s surface. Nature, 399, 569–572.

    Article  Google Scholar 

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: the generation of perturbations. Bull. Amer. Meteorol. Soc., 74, 2317–2330.

    Article  Google Scholar 

  • WMO, 1999: Scientific Assessment of Ozone Depletion: 1998. WMO, Global Ozone Research and Monitoring Project Report No 44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lahoz, W.A. (2003). Atmospheric Modelling. In: Swinbank, R., Shutyaev, V., Lahoz, W.A. (eds) Data Assimilation for the Earth System. NATO Science Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0029-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0029-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1593-9

  • Online ISBN: 978-94-010-0029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics