Advertisement

Extreme Ultraviolet Imager Observations of the Structure and Dynamics of the Plasmasphere

  • B. R. Sandel
  • J. Goldstein
  • D. L. Gallagher
  • M. Spasojevic
Chapter

Abstract

The IMAGE Extreme Ultraviolet Imager (EUV) provides our first global images of the plasmasphere by imaging the distribution of He+ in its 30.4-nm resonance line. The images reveal the details of a highly structured and dynamic entity. Comparing EUV images and selected in-situ observations has helped to validate the remote sensing measurements. The brightness in the EUV images is heavily weighted by the He+ density near the plane of the magnetic equator, but two lines of evidence emphasize that the features seen by EUV extend far from the equator, and in at least some cases reach the ionosphere. Certain features and behaviors, including shoulders, channels, notches, and plasma erosion events, appear frequently in the EUV images. These are keys to understanding the ways that electric fields in the inner magnetosphere affect the large and meso-scale distribution of plasma, and their study can elucidate the mechanisms by which the solar wind and interplanetary magnetic field couple to the inner magnetosphere.

Keywords

Solar Wind Total Electron Content Interplanetary Magnetic Field Flux Tube Magnetic Equator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brice, N.M.: 1967, ’Bulk motion of the magnetosphere’, J. Geophys. Res. 72, 5193.CrossRefADSGoogle Scholar
  2. Burch, J.L. et al.: 2001a, ’Views of the Earth’s magnetosphere with the IMAGE satellite’, Science 291, 619.CrossRefADSGoogle Scholar
  3. Burch, J.L., Mitchell, D.G., Sandel, B.R., Brandt, P.C:son, and Wüest, M.: 2001b, ’Global dynamics of the plasmasphere and ring current during magnetic storms’, Geophys. Res. Lett. 28, 1159–1162.CrossRefADSGoogle Scholar
  4. Carpenter, D.L., and Park, C.G.: 1973, ’What ionospheric workers should know about the plasma-pause/plasmasphere’, Rev. Geophys. 11, 133–154.CrossRefADSGoogle Scholar
  5. Carpenter, D.L., Smith, A.J., Giles, B.L., Chappell, C.R., and Decreau, P.M.E.: 1992, ’A case study of plasma in the dusk sector associated with enhanced magnetospheric convection’, J. Geophys. Res. 97, 1157.CrossRefADSGoogle Scholar
  6. Carpenter, D.L., Anderson, R.R., Calvert, W., and Moldwin, M.B.: 2000, ’CRRES observations of density cavities inside the plasmaphere’, J. Geophys. Res. 105, 23,323–23,338.Google Scholar
  7. Fok, M.-C., Kozyra, J.U., Nagy, A.F., and Cravens, T.E.: 1991, ’Lifetime of ring current particles due to coulomb collisions in the plasmasphere’, J. Geophys. Res. 96, 7861.CrossRefADSGoogle Scholar
  8. Foster, J.C., Erickson, P.J., Coster, A.J., Goldstein, J., and Rich, F.J.: 2002, ’Ionospheric signatures of plasmaspheric tails’, Geophys. Res. Lett. 10.1029/2002GL015067.Google Scholar
  9. Freeman, J.W.: 1993, ’Magnetospheric Specification Model development code and documentation. Report for USAF contract F19628-90-K-0012‘, Rice University, Houston, TX.Google Scholar
  10. Gallagher, D.L., Craven, P.D., and Comfort, R.H.: 2000, ’Global core plasma model’, J. Geophys. Res. 105, 18819.CrossRefADSGoogle Scholar
  11. Garcia, L.N., Fung, S.F., Green, J.L., Boardsen, S., Sandel, B.R., and Reinisch, B.W.: 2002, ’Comparisons of IMAGE RPI and EUV observations of plasma density structures outside of the plasmasphere’, J. Geophys. Res., in press.Google Scholar
  12. Goldstein, J., Spasojevic, M., Reiff, P.H., Sandel, B.R., Forrester, W.T., Gallagher, D.L., and Reinisch,B.W.: 2002a, ’Identifying the Plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients’, J. Geophys. Res. 108, 10.1029/2002JA009475.Google Scholar
  13. Goldstein, J., Spiro, R.W., Reiff, P.H., Wolf, R.A., Sandel, B.R., Freeman, J.W., and Lambour, R.L.: 2002b, ’IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000’, Geophys. Res. Lett. 10.1029/2001GL014534.Google Scholar
  14. Goldstein, J., Sandel, B.R., Forrester, W.T., and Reiff, P.H.: 2002c, ’IMF-driven plasmasphere erosion of 10 July 2000’, Geophys. Res. Lett. 30, 10.1029/2002GL016478.Google Scholar
  15. Grebowsky, J.M.: 1970, ’Model study of plasmapause motion’, J. Geophys. Res. 75, 4329.CrossRefADSGoogle Scholar
  16. Green, J.L., and Reinisch, B.W.: 2002, ’An Overview of results from RPI on IMAGE’, Space Science Reviews, this issue.Google Scholar
  17. Green, J.L., Sandel, B.R., Fung, S.F., Gallagher, D.L., and Reinisch, B.W.: 2002, ’On the origin of kilometric continuum, J. Geophys. Res. 10.1029/2001JA000193.Google Scholar
  18. Gurgiolo, C., Sandel, B., and Gallagher, D.: 2000, ’First attempt at producing a 3d plasmasphere model from EUV images’, Magnetospheric Imaging Workshop, Yosemite Natl Park, CA, 5–8 Feb.Google Scholar
  19. Hashimoto, K.W., Calvert, W., and Matsumoto, H.: 1999, ’Kilometric continuum detected by GEOTAIL’,J. Geophys. Res. 104, 28645–28656.CrossRefADSGoogle Scholar
  20. Horwitz, J.L., Comfort, R.H., and Chappell, C.R.: 1990, ’A statistical characterization of the plasmasphere density structure and boundary locations’, J. Geophys. Res. 95, 7937–7947.CrossRefADSGoogle Scholar
  21. Jaggi, R.K., and Wolf, R.A.: 1973, ’Self-consistent calculation of the motion of a sheet of ions in the magnetosphere’, J. Geophys. Res. 78, 2852.CrossRefADSGoogle Scholar
  22. Jordanova, V.K., Kozyra, J.U., Nagy, A.F., and Khazanov, G.V: 1997, ’Kinetic model of the ring current-atmosphere interactions’, J. Geophys. Res. 102, 14,279.Google Scholar
  23. Kozyra, J.U., Jordanova, V.K., Horne, R.B., and Thorne, R.M.: 1997, ’Modeling of the contribution of electromagnetic ion cyclotron (EMIC) waves to stormtime ring current erosion’, in B.T. Tsurutani (ed.), Magnetic Storms, p. 187, AGU, Washington DC.CrossRefGoogle Scholar
  24. Moldwin, M., Sandel, B., Thomsen, M, and Elphic, R.: 2002, ’Quantifying global plasmaspheric images with in situ observations’, Space Science Reviews, this issue.Google Scholar
  25. Nishida, A.: 1966, ’Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail’, J. Geophys. Res. 71, 5669.ADSGoogle Scholar
  26. Roelof, E.C., and Skinner, A.J.: 2000, ’Extraction of ion distributions from magnetospheric ENA and EUV images’, Space Sci. Rev. 91, 437.CrossRefADSGoogle Scholar
  27. Sandel, B.R., Broadfoot, A.L., Curtis, C.C., King, R.A., Stone, T.C., Hill, R.H., Chen, J., Siegmund, O.H.W., Raffanti, R., Allred, D.D., Turley, R.S., and Gallagher, D.L.: 2000, ’The extreme ultraviolet imager investigation for the IMAGE mission’, Space Science Reviews 91, 197–242.CrossRefADSGoogle Scholar
  28. Sandel, B.R., King, R.A., Forrester, W.T., Gallagher, D.L., Broadfoot, A.L., and Curtis, C.C.: 2001, ’Initial results from the IMAGE extreme ultraviolet imager’, Geophys. Res. Lett. 28, 1439–1442.CrossRefADSGoogle Scholar
  29. Wolf, R.A., et al.: 1997, ’Modeling convection effects in magnetic storms’, in B.T. Tsurutani (ed.), Magnetic Storms, p. 161, AGU, Washington DC.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. R. Sandel
    • 1
  • J. Goldstein
    • 2
  • D. L. Gallagher
    • 3
  • M. Spasojevic
    • 4
  1. 1.Lunar and Planetary LaboratoryThe University of ArizonaTucsonUSA
  2. 2.Department of Physics and AstronomyRice UniversityHoustonUSA
  3. 3.National Space Science and Technology CenterNASA Marshall Space Flight CenterHuntsvilleUSA
  4. 4.STAR LabStanford UniversityStanfordUSA

Personalised recommendations