Skip to main content

Spectroscopic and Thermochemical Information on the O2−O2 Collisional Complex Inferred From Atmospheric Uv/Visible O4 Absorption Band Profile Measurements

  • Conference paper
  • 144 Accesses

Part of the book series: NATO Science Series ((NAIV,volume 27))

Abstract

Atmospheric profiles of the ultraviolet/visible (UV/vis) absorption bands of the collision complex O2−O2, or O4 in brief, are reported. The O4 absorption profiles are inferred from direct Sun spectra observed from the LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) balloon gondola. Seven O4 absorption bands — centered at ~ 360.7, 380.2, 446.7, 477.1, 532.2, 577.2, and 630.0 nm — are investigated for atmospheric pressures (p) ranging from ~ 500 hPa to ~ 40hPa and temperatures (T) ranging from 203 K to 250 K. For the encountered atmospheric conditions, it is found that, (a) the band shapes do not change with T and p and (b) the peak collision pair absorption intensities (αi) concurrently increase with decreasing T (by about 11% over a ΔT = 50K). That result is in agreement with previous laboratory O4 studies mostly conducted at high O2 partial pressures (up to several hundred bars). Furthermore, by reasonably assuming that the O4 absorption cross sections are T-independent, the inferred T-dependence of αi (T) suggests a thermally averaged enthalpy change <ΔH> = − (1207 ± 83) J/Mol involved in the formation of O4. Our inferred ΔH is in reasonable agreement with the orientation and spin averaged O4 well depth De(O4)(= − (1130 ± 80) J/Mol) measured in a recent O2−O2 collision experiment, when accounting for the rovibrational energy change during O4 formation (189 J/Mol).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., and Pirani, F. (2001) Dimers of the major components of the atmosphere: Realistic potential energy surfaces and quantuum mechanical prediction of spectral features, Phys. Chem. Chem. Phys., 3, 3891–3894.

    Article  Google Scholar 

  2. Aquilanti, V., Ascenzi, D., Bartolomei, M., Cappelletti, D., and Cavalli, S. (1999) Quantum interference scattering of aligned molecules: bonding in O4 and the role of spin coupling, Phys. Rev. Lett., 82, 69–73.

    Article  Google Scholar 

  3. Aquilanti, V., Ascenzi, D., Bartolomei, M., Cappelletti, D., and Cavalli, S., Vitores, M. de C and Pirani, F. (1999) Molecular beam scattering of aligned oxygen molecules. The nature of the bond in O2−O2 dimer, J. Am. Chem. Soc, 121, 10794–10802.

    Article  Google Scholar 

  4. Biennier, L., Romanini, D., Kachanov, A., Campargue, A., Bussery-Honvault, B., and Bacis, R. (2000) Structure and rovibrational analysis of the CHEN CONG THUC transition of the O2 dimer, J. Chem. Phys., 112, 14, 6309–6321.

    Article  Google Scholar 

  5. Blake, A.J. and McCoy, D. G. (1987) The pressure dependence of the Herzberg photoabsorption continuum of oxygen, J. Quant. Spectrosc. and Radiat. Transfer, 38, 113–120.

    Article  Google Scholar 

  6. Blickensderfer, R. P. and Ewing, G. E. (1969) Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressure. 1. The CHEN CONG THUC system, J. Chem. Phys., 51, 873–883.

    Article  Google Scholar 

  7. Blickensderfer, R. P. and Ewing, G. E. (1969) Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressure. 2. The simultaneous transition CHEN CONG THUC and CHEN CONG THUC, J. Chem. Phys., 51, 5284–5289.

    Article  Google Scholar 

  8. Campargue, A., Biennier, L., Kachonov, A., Jost, R., Bussery-Honvault, B., Veyret, V., Churassy, S., and Bacis, R. (1998) Rotationally resolved absorption spectrum of the O2 dimer in the visible range, Chem. Phys. Lett., 288, 734–742.

    Article  Google Scholar 

  9. Cappelletti, D., Vecchiocattivi, F., Pirani, F., Heck, E. L., and Dickinson, A. S. (1998) An intermolecular potential for nitrogen from a multi-property analysis, Mol. Phys. 93, 485–499.

    Article  Google Scholar 

  10. Dianov-Klokov, V. I. (1964) Absorption spectrum of oxygen at pressures from 2 to 35 atm in the region from 12,600 to 3600 Å, Optics and Spectroscopy, 16, 224–227.

    Google Scholar 

  11. Ellis, J.W. and Kneser, H.O. (1933) Kombinationsbeziehungen im Absorption-sspektrum des flüssigen Sauerstoffs, Zeitsch. der Physik, 86, 583–591.

    Article  Google Scholar 

  12. Erle, F., Pfeilsticker, K., and Platt, U. (1995) On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species, Geophys. Res. Lett., 20, 2725–2728.

    Article  Google Scholar 

  13. Ferlemann, F. et al. (2000) A new DOAS-instrument for stratospheric balloon borne trace gas studies, J. Applied Optics, 39, 2377–2386.

    Article  Google Scholar 

  14. Greenblatt, G. D., Orlando, J. J., Burkholder, J.B., and Ravishankara, A. R. (1990) Absorption measurements of oxygen between 330 and 1140 nm, J. Geophys. Res., 95, 18577–18582.

    Article  Google Scholar 

  15. Gorelli, F.A., Ullivi, L., Santoro, M., and Bini, R. (1999) The ε phase of solid oxygen: evidence of an O4 molecule lattice, Phys. Rev. Lett., 83, 4093–4096.

    Article  Google Scholar 

  16. Herman, L. (1939) Spectre d’absorption de l’oxygène, Ann. Phys., 11, 548–611.

    Google Scholar 

  17. Herzberg, G. (1989) Molecular Spectra and Molecular Structure, Robert Krieger Publsihing Company, Malabar, FL, Vol. 1, p. 585.

    Google Scholar 

  18. Horowitz, A., Schneider, W., and Moortgat, G.K. (1989) The role of oxygen dimer in oxygen photolysis in the Herzberg continuum. A temperature dependence study, J. Phys. Chem., 93, 7859–7863.

    Article  Google Scholar 

  19. Janssen, J. (1885) Analyse spectrale des éléments de l’atmosphère terrestre, Compt. Rendus de l’Academie des Sciences, 101, 649–651.

    Google Scholar 

  20. Johnston, H. S., Paige, M., and Yao, F. (1984) Oxygen absorption cross sections in the Herzberg continuum and between 206 and 327K, J. Geophys. Res., 89, 11661–11665.

    Article  Google Scholar 

  21. Long, C.A. and Ewing, G. (1973) Spectroscopic investigation of van der Waals molecules. 1. Infrared and visible spectra of (O2)2, J. Chem. Phys., 58, 11, 4824–4834.

    Article  Google Scholar 

  22. McKellar, A.R. W., Rich, N.H., and Welsh, H. L. (1972) Collsion-induced vibrational and electronic spectra of gaseous oxygen at low temperatures, Can. J. Phys., 50, 1–9.

    Article  Google Scholar 

  23. Mlawer, E. J., (1998) Clough, S.A., Brown, P.D., Stephens, T.M., Landry, J. C., Goldman, A., and Murcray, F. J. (1998) Observed atmospheric collision induced absorption in near infrared oxygen bands, J. Geophys. Res, 103, 3859–3863.

    Article  Google Scholar 

  24. Newnham, D.A. and Ballard, J. (1998) Visible absorption cross section and integrated absorption intensities of molecular oxygen O2, and O4, J. Geophys. Res., 103, 28801–28816.

    Article  Google Scholar 

  25. Orlando, J. J., Tyndall, G. S., Nickerson, K.E., and Calvert, J.G. (1991) The T dependence of collision-induced absorption by oxygen near 6 μm, J. Geophys. Res., 96, 20755–20760.

    Article  Google Scholar 

  26. Pfeilsticker, K., Erle, F., and Platt, U. (1997) Absorption of solar radiation by atmospheric O4, J. Atmos. Sci., 54, 7, 939–445.

    Article  Google Scholar 

  27. Perner, D. and Platt, U. (1980) Absorption of light in the atmosphere by collision pairs of oxygen (O2)2, Geophys. Res. Lett., 7, 1053–1056.

    Google Scholar 

  28. Platt, U. (1994) Differential optical absorption spectroscopy (DOAS), Air Monit. by Spectr. Techniques. Ed. by M. W. Sigrist, Chemical Analysis Series, John Wiley & Sons Inc., V. 127, pp. 27–84.

    Google Scholar 

  29. Rinsland, C. P. et al. (1982) Stratospheric measurements of collision-induced absorption by moleculer oxygen, J. Geophys. Res., 87, 3119–3122.

    Article  Google Scholar 

  30. Rodgers, C. W. (1976) Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. of Geophys. and Space Phys., 14, 4, 609–623.

    Article  Google Scholar 

  31. Salow, H. and Steiner, W. (1936) Durch die Wechselwirkungkräfte bedingten Absorptionsspektren des Sauerstoffs, 1. Absorptionsbanden des O2–O2 Moleküls, Zeitsch. der Physik, 99, 137–158.

    Article  Google Scholar 

  32. Shardanand Nhung. (1969) Absorption cross section of O2, and O4 between 2000–2800 Å, Phys. Rev., 186, 5–9.

    Article  Google Scholar 

  33. Solomon, S., Portmann, R.W., Sanders, R.W., and Daniel, J. S. (1998) Absorption of solar radiation by water vapor, oxygen and related collision pairs in the Earth atmosphere, J. Geophys. Res., 103, 3847–3858.

    Article  Google Scholar 

  34. Tabisz, G.C., Allin, E. J., and Welsh, H. L. (1969) Interpretation of the visible and near-infrared spectra of compressed oxygen as collision-induced electronic transitions, Can. J. Physics, 47, 2859–2871.

    Article  Google Scholar 

  35. Vigasin, A.A. (2001) Thermally averaged spectroscopic parameters of weakly bound dimers, J. Molec. Spectr., 205, 9–15.

    Article  Google Scholar 

  36. Wagner, T. and Platt, U. (1998) Observation of tropospheric BrO from GOME satellite, Nature, 395, 486–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pfeilsticker, K., Bösch, H., Fitzenberger, R., Camy-Peyret, C. (2003). Spectroscopic and Thermochemical Information on the O2−O2 Collisional Complex Inferred From Atmospheric Uv/Visible O4 Absorption Band Profile Measurements. In: Camy-Peyret, C., Vigasin, A.A. (eds) Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0025-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0025-3_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1596-0

  • Online ISBN: 978-94-010-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics