Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 27))

Abstract

Intermolecular interactions are known to affect the absorptivity of the atmosphere in various aspects. Pair effects give rise to distortions in the line profiles, make dipole forbidden bands to appear in the spectra, modify the band-shapes at elevated density etc. Three categories of molecular pairs can be distinguished in a gas which are true bound, metastable, and free pairs. Although somewhat overlapping, the spectroscopic manifestations of these entities are essentially different. Their partial contributions are subject to strong variations as a function of temperature and intermolecular potential energy. The present paper is targeted at reviewing bimolecular absorption phenomena taking infrared spectra of N2, O2, CO2, and H2O as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stogryn, D.E. and Hirshfelder, J. O. (1959) Contribution of bound, metastable and free molecules to the second virial coefficients and some properties of double molecules, J. Chem. Phys., 31, 1531–1545.

    Article  Google Scholar 

  2. Vigasin, A.A. (1991) Bound, metastable and free states of bimolecular complexes, Infrared Phys., 32, 461–470.

    Article  Google Scholar 

  3. Hill, T. (1956) Statistical Mechanics, McGraw-Hill, New York.

    Google Scholar 

  4. Vigasin, A.A. (1985) On the spectroscopic manifestations of weakly bound com-plexes in rarefied gases, Chem. Phys. Lett., 117, 85–88.

    Article  Google Scholar 

  5. Vigasin, A.A. (1998) Dimeric absorption in the atmosphere. In: A.A. Vigasin and Z. Slanina, editors. Molecular Complexes in Earth’s, Planetary, Cometary, and Interstellar Atmospheres, World Scientific, Singapore, pp. 60–99.

    Chapter  Google Scholar 

  6. Schenter, G.K., Kathmann, S. M., and Garrett, B. C. (2002) Equilibrium constant for water dimerization: Analysis of the partition function for a weakly bound system, J. Phys. Chem. A, 106, 1557–1566.

    Article  Google Scholar 

  7. Levine, H.B. (1972) Spectroscopy of dimers, J. Chem. Phys., 56, 2455–2473.

    Article  Google Scholar 

  8. Epifanov, S.Yu. and Vigasin, A. A. (1994) Contribution of bound, metastableb and free states of bimolecular complexes to collision-induced intensity of absorption, Chem. Phys. Lett., 225, 537–541.

    Article  Google Scholar 

  9. Pine, A. S., Lafferty, W. J., and Howard, B. J. (1984) Vibrational predissociation, tunneling, and rotational saturation in the HF and DF dimers, J. Chem. Phys., 81, 2939–2950.

    Article  Google Scholar 

  10. [10] Ivanov, S.V. (2003) Trajectory study of CO2-Ar and He collision complexes, this volume, pp. 49–63.

    Google Scholar 

  11. Fiatin D.C., Goyette T. M., Beaky M. M., Ball C.D., and De Lucia, F. C. (1999) Rotational state dependence of collision induced line broadening and shift at low temperatures, J. Chem. Phys., 110, 2087–2098.

    Article  Google Scholar 

  12. Sumpter, B.G., Thompson, D. L., and Noid, D.W. (1987) The effect of resonances on collisional energy transfer, J. Chem. Phys., 87, 1012–1021.

    Article  Google Scholar 

  13. Robinson, P.J. and Holbrook, K. A. (1972) Unimolecular Reactions, Wiley, New York.

    Google Scholar 

  14. Frommhold, L. (1993) Collision-induced Absorption in Gases, Cambridge University Press, Cambridge.

    Google Scholar 

  15. McKellar, A.R.W. (1996) High resolution infrared spectra of H2-Ar, HD-Ar, and D2-Ar van der Waals complexes between 160 and 8620 cm-1, J. Chem. Phys., 105, 2628–2653.

    Article  Google Scholar 

  16. Dunker, A. M. and Gordon, R. G. (1978) Bound atom-diatomic molecule complexes. Anisotropic intermolecular potentials for the hydrogen-rare gas systems, J. Chem. Phys., 68, 700–725.

    Article  Google Scholar 

  17. McKellar, A. R. W. (1988) Infrared spectra of the (N2)2 and N2-Ar van der Waals molecules, J. Chem. Phys., 88, 4190–4196.

    Article  Google Scholar 

  18. Maté, B., Lugez, C.L., Solodov, A.M., Fraser, G. T., and Lafferty, W. J. (2000) Investigation of the collision-induced absorption by O2 near 6.4 µm in pure O2 and O2/N2 mixtures, J. Geophys. Research, 105, 22225–22230.

    Article  Google Scholar 

  19. Wishnow, E.H., Gush, H.P., and Ozier, I. (1996) Far-infrared spectrum of N2 and N2-noble gas mixtures near 80K, J. Chem. Phys., 104, 3511–3516.

    Article  Google Scholar 

  20. Baranov, Yu. I. and Vigasin, A. A. (1999) Collision-induced absorption by CO2 in the region of ν 1, 2ν 2, J. Molec. Spectrosc, 193, 319–325.

    Article  Google Scholar 

  21. Vigasin, A. A., Baranov, Y. I., and Chlenova, G. V. (2002) Temperature variations of the interaction induced absorption of CO2 in the ν 1, 2ν 2, region: FTIR measurements and dimer contribution, J. Molec. Spectrosc, 213, 51–56.

    Article  Google Scholar 

  22. Huisken, F., Ramonat, L., Santos, J., Smirnov, V. V., Stelmakh, O.M., and Vigasin, A.A. (1997) High resolution CARS spectroscopy of small carbon dioxide clusters: investigation of the CO2 dimer in the ν 1, 2ν 2, Fermi dyad, J. Molec. Struct., 410/411, 47–50.

    Google Scholar 

  23. Bouanich, J.-P. (1992) Site-site Lennard—Jones potential parameters for N2, O2, H2, CO, and CO2, JQSRT, 47, 243–250.

    Article  Google Scholar 

  24. Vigasin, A. A. (2000) Collision-induced absorption in the region of the 02 fundamental: Bandshapes and dimeric features, J. Molec. Spectrosc, 202, 59–66.

    Article  Google Scholar 

  25. Vigasin, A.A. (1996) On the nature of collision-induced absorption in gaseous homonuclear diatomics, JQSRT, 56, 409–422.

    Article  Google Scholar 

  26. Baranov, Y. I., Vigasin, A. A., Lafferty, W. J., and Fraser, G. T. (2002) Continuum absorption in the region of the O2 vibrational fundamental band in O2 and CO2 mixtures at temperatures ranging from 220 K to 296 K. In: Proc. 57th Ohio State University International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 17–21.

    Google Scholar 

  27. Vetrov, A.A. (1976) The Study of Absorption Coefficients and the Structure of Water Vapor at High Temperatures and Pressures. Ph. D. Thesis, Institute for High Temperatures, USSR Academy of Sciences, Moscow (in Russian).

    Google Scholar 

  28. Filippov, N.N., Tonkov, M.V., Boulet, Ch., and Bouanich, J.-P. (1993) Analysis of line mixing in CO 2-0 band in high pressure nitrogen. In: Proc. High-Resolution Molecular Spectroscopy, SPIE Vol. 2205, pp. 328–331.

    Google Scholar 

  29. Filippov, N. N., Bouanich, J.-P., Hartmann, J.-M., Ozanne, L., Boulet, C, Tonkov, M. V., Thibault, F., and Le Doucen, R. (1996) Line-mixing effects in the 3ν 3 badn of CO2 perturbed by Ar, JQSRT, 55, 307–320.

    Article  Google Scholar 

  30. Hartmann, J.-M. and Boulet, C. (1991) Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, J. Chem. Phys., 94, 6406–6419.

    Article  Google Scholar 

  31. Vigasin, A.A., Filippov, N.N., and Chlenova, G.V. (1992) Effect of the inter-ference of spectral lines and van der Waals association of the molecules on the shape of the 2.0-µm band of compressed CO2, Opt. Spectrosc. (USSR), 72, 56–59.

    Google Scholar 

  32. Adiks, T. G., Tchlenova, G. V., and Vigasin, A. A. (1989) On the influence of  van der Waals association on the IR absorption band shapes of the highly compressed carbon dioxide, Infrared Phys., 29, 575–582.

    Article  Google Scholar 

  33. Tchlenova, G.V., Vigasin, A.A., Bouanich, J.-P., and Boulet, C. (1993) The nature of the absorption bandshape density evolution for the first overtone of CO compressed by N2, Infrared Phys., 34, 289–298.

    Article  Google Scholar 

  34. Adiks, T. G. (1982) Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere. Ph. D. Thesis, Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow (in Russian).

    Google Scholar 

  35. Tobin, D.C., Strow, L.L., Lafferty, W. J., and Olson, B. (1996) Experimental investigations of the self and N2-broadened continuum within the v 2 band of water vapor, Appl. Optics, 35, 4724–4734.

    Google Scholar 

  36. Tipping, R. H. and Ma, Q. (1995) Theory of the water vapor continuum and validations, Atmospheric Research, 36, 69–94.

    Article  Google Scholar 

  37. Cormier, J.G., Ciurilo, R., and Drummond, J. R. (2002) Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, J. Chem. Phys., 116, 1030–1034.

    Article  Google Scholar 

  38. Maureiiis, A.N., Lang, R., Williams, J. E., van der Zande, W.J., Smith, K., Newnham, D.A., Tennyson, J., and Tolchenov, R.N. (2003) The impact of new water vapor spectroscopy on satellite retrievals, this volume, pp. 259–272.

    Google Scholar 

  39. Epifanov, S. Yu. and Vigasin, A. A. (1997) Subdivision of the phase space for anistropically interacting water molecules, Molec. Phys., 90, 101–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vigasin, A.A. (2003). Bimolecular Absorption in Atmospheric Gases. In: Camy-Peyret, C., Vigasin, A.A. (eds) Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0025-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0025-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1596-0

  • Online ISBN: 978-94-010-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics