Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 27))

Abstract

A far-wing line shape theory that satisfies the detailed balance principle has been developed invoking only the binary-collision and qua-sistatic approximations. This first-principles theory has been applied to calculate the far-wing line shapes and the corresponding absorption for H2O-H2O and H2O-N2, which for historical reasons, are called the self- and foreign-broadened water continua. Using sophisticated interaction potentials that give good agreement with other transport data, and the coordinate representation, in which the required traces become multi- dimensional integrals over the angular coordinates necessary to specify the positions before and after the collision (11-dimensional for the self and 9-dimensional for the foreign continuum, respectively), we can obtain converged results using modest computational resources. Results obtained are in very good agreement with existing laboratory data, and comparisons with empirical continua are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothman, L. S., Gamache, R. R., Tipping, R. H., Rinsland, C. P., Smith, M. A.H., Benner, D.C., Devi, V.M., Flaud, J.-M., Camy-Peyret, C, Perrin, A., Goldman, A., Massie, S.T., and Brown, L. R. (1992) The HITRAN Molecular Database: Editions of 1991 and 1992, J. Quant. Spec. Rad. Transfer, 48, 469–507.

    Article  Google Scholar 

  2. Jacquinet-Husson, N., Aire, E., Ballard, J., Barbe, A., Bjoraker, G., Bonnet, B., Brown, L.R., Camy-Peyret, C., Champion, J. P., Chedin, A., Chursin, A., Clerbaux, C, Duxbury, G., Flaud, J. M., Fourrie, N., Fayt, A., Granier, G., Gamache, R., Goldman, A., Golovko, VI., Guelachvili, G., Hartmann, J. M., Hilico, J. C, Hillman, J., Leferve, G., Lellouch, E., Mikhailenko, S. N., Naumenko, O. V., Nemtchinov, V., Newnham, D. A., Nikitin, A., Orphal, J., Perrin, A., Reuter, D.C., Rinsland, C. P., Rosenmann, L., Rothman, L. S., Scott, N. A., Selby, J., Sinitsa, L. N., Sirota, J. M., Smith, A.M., Smith, K.M., Tyuterev, VI. G., Tipping, R.H., Urban, S., Varanasi, P., and Weber, M. (1999) The 1997 Spectroscopic GEISA Databank, J. Quant. Spec. Rad. Transfer, 62, 205–254.

    Article  Google Scholar 

  3. Levy, A., Lacome, N., and Chackerian, Jr. C. (1992) Collisional line mixing. In: K. Narahari Rao and A. Weber, editors. Spectroscopy of the Earth’s Atmosphere and Interstellar Medium, Academic Press, San Diego, pp. 261–337.

    Google Scholar 

  4. Ozanne, L., Ma, Q., Nguyen-Van Thanh, Brodbeck, C, Bouanich, J. P., Hartmann, J. M., Boulet, C, and Tipping, R. H. (1997) Line-mixing, finite duration of collision, vibrational shift, and non-linear density effects in the v 3 and 3v 3 bands of CO2 perturbed by Ar up to 1000 bars, J. Quant. Spec. Rad. Transfer, 58, 261–277.

    Article  Google Scholar 

  5. Frommhold, L (1993) Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Tipping, R. H., Brown, A., Ma, Q., Hartmann, J.-M., Boulet, C, and Lievin, J. (2001) Collision-induced absorption in the v 2 fundamental band of CH4: I. Determination of the quadrupole transition moment, J. Chem. Phys., 115, 8852-8857.

    Article  Google Scholar 

  7. Brown, A. and Tipping, R. H. (2001) Theoretical study of collision-induced double transitions in CO2-X2 (X2-N2, and O2) pairs, J. Mol. Spectrosc., 205, 319-322.

    Article  Google Scholar 

  8. Moreau, G., Boissoles, J., Le Doucen, R., Boulet, C, Tipping, R. H., and Ma, Q. (2001) Metastable dimer contributions to the collision-induced fundamental absorption spectra of N2 and O2 pairs, J. Quant. Spec. Rad. Transfer, 70, 99–113.

    Article  Google Scholar 

  9. Moreau, G., Boissoles, J., Boulet, C, Tipping, R.H., and Ma, Q. (2000) Theoretical study of the collision-induced fundamental absorption spectra of O2-O2 pairs for temperatures between 193 K and 273 K, J. Quant. Spec. Rad. Transfer, 64, 87–107.

    Article  Google Scholar 

  10. Moreau, G., Boissoles, J., Le Doucen, R., Boulet, C, Tipping, R. H., and Ma, Q. (2001) Experimental and theoretical study of the collision-induced fundamental absorption spectra of N2-O2 and O2-N2 pairs, J. Quant. Spec. Rad. Transfer, 69, 245–256.

    Article  Google Scholar 

  11. Ma, Q., Tipping, R. H., and Boulet, C. (1996) The frequency detuning and band- average approximations in a far-wing line shape theory satisfying detailed balance, J. Chem. Phys., 104, 9678–9688.

    Article  Google Scholar 

  12. Ma, Q. and Tipping, R. H. (1998) The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2, J. Chem. Phys., 108, 3386–3399.

    Article  Google Scholar 

  13. Ma, Q. and Tipping, R. H. (1999) The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2O, J. Chem. Phys., 111, 5909–5921.

    Article  Google Scholar 

  14. Ma, Q. and Tipping, R. H. (2000) The Density matrix of H2O-N2 in the coordinate representation: A Monte Carlo calculation of the far-wing line shape, J. Chem. Phys., 112, 574–584.

    Article  Google Scholar 

  15. Ma, Q. and Tipping, R. H. (2002) The Frequency detuning correction and the asymmetry of line shapes: The far-wings of H2O-H2O, J. Chem. Phys., 116, 4102–4115.

    Article  Google Scholar 

  16. Ma, Q., Tipping, R.H., Hartmann, J. M., and Boulet, C. (1995) Detailed balance in far–wing line shape theories: comparisons between different formalisms, J. Chem. Phys., 102, 3009–3010.

    Article  Google Scholar 

  17. Burch, D.E. and Gryvnak, D. A. (1979) Method of calculating the H20 transmission between 333 and 633 cm-1, AFGL-TR-79-0054.

    Google Scholar 

  18. Burch, D.E. and Alt, R. L. (1984) Continuum absorption by H20 in the 700-1200 cm-1 and 2400-2800 cm-1 windows, AFGL-TR-84–0128.

    Google Scholar 

  19. Clough, S.A., Kneizys, F.X., and Davies, R. W. (1989) Line shape and the water vapor continuum, Atmos. Res., 23, 229–241.

    Article  Google Scholar 

  20. Cormier, J. G., Ciurylo, R., and Drummond, J. R. (2002) Cavity Ringdown Spectroscopy measurements of the infrared water vapor continuum, J. Chem. Phys., 116, 1030–1034.

    Article  Google Scholar 

  21. Mlawer, E.J., Clough, S.A., Brown, P.D., and Tobin, D. C. (1998) Collision-induced effects and the water vapor continuum, Eighth ARM Science Team Meeting Proceedings, Tucson, March 23–27.

    Google Scholar 

  22. Fulghum, S.F. and Tilleman, M. M. (1991) Interferometric calorimeter for the measurement of water vapor absorption, J. Opt. Soc. Am. B, 8, 2401–2413.

    Article  Google Scholar 

  23. Tobin, D.C., Strow, L.L., Lafferty, W. J., and Olson, W.B. (1996) Experimental investigation of the self- and N2-broadened continuum within the v 2 band of water vapor, Appl. Opt., 35, 4724–4734.

    Article  Google Scholar 

  24. [24] Brown, A. and Tipping, R. H., Collision-induced absorption in dipolar molecule-homonuclear diatomic pairs, this volume, 93–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tipping, R.H., Ma, Q. (2003). Far-Wing Line Shapes: Application to The Water Continuum. In: Camy-Peyret, C., Vigasin, A.A. (eds) Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0025-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0025-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1596-0

  • Online ISBN: 978-94-010-0025-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics