Skip to main content

The Use of Microtremors for Soil and Site Characterisation and Microzonation Applications

  • Conference paper
  • 474 Accesses

Part of the book series: NATO Science Series ((NAIV,volume 29))

Abstract

The Microtremor Exploration Method (MEM) is an innovative, alternative method for the determination of Vs profiles and subsoil geometry for site and soil characterization, Using the Spatial Autocorrelation Method (SPAC) a circular array of few broadband instruments allows the accurate determination of Vs profiles. A Rayleigh wave inversion scheme was applied following the determination of phase velocity dispersion curves for different frequency range windows. The Vs profiles combined with other geotechnical data and simultaneous HVSR measurements allowed the construction of 3D geotechnical maps, describing the Vs velocities of the stratigraphy of the soil formations from the surface till the seismic bedrock.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., 1957. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bull. Earthq. Res. Inst.Tokyo Univ. 25, pp. 415–457.

    MathSciNet  Google Scholar 

  2. Aki K., 1965. A note on the use of micro seismic in determining the shallow structure of the earth’s crust, Geophysics 30, pp. 665–666.

    Google Scholar 

  3. Aki, K. and B. Chouet, 1991. Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array. Journal of Geophysical Research, Vol. 96, No. B4, pp. 6199–6209.

    Article  Google Scholar 

  4. Anastasiadis, A., D. Raptakis, and K. Pitilakis, 2001. Thessaloniki’s Detailed Microzoning: Subsurface Structure as Basis of Site Response Analysis, PAGEOPH Special Issue on Microzoning, Vol. 158, N.11, pp. 2497–2533.

    Google Scholar 

  5. Apostolidis, P., 2002. Determination of the soil structure using microtremors. Application to the estimation of the dynamic properties and the geometry of the soil formations at Thessaloniki city. PhD Thesis, Aristotle University of Thessaloniki, Greece.

    Google Scholar 

  6. Capon, J., 1969. High-resolution frequency-wave number spectrum analysis, Proc. IEEE, 57, pp. 1408–1418.

    Google Scholar 

  7. Chavez-Garcia, F.J., D. Raptakis, K. Makra and Pitilakis K., 2000. Site effects at Euroseistest-II. Results from 2D numerical modelling and comparison with observations. J. of Soil Dyn. and Earthq. Engnr, 19(1), pp. 23–39.

    Article  Google Scholar 

  8. Chouet, B. G. Luca, G. Milana, P. Dawson, M. Martini and R. Scarpa, 1998. Shallow Velocity Structure of Stromboli Volcano, Italy, Derived from Small-Aperture Array Measurements of Strombolian Tremor, Bull. Seism. Soc. Am. Vol. 88, No 3, pp. 653–666.

    Google Scholar 

  9. Goldstein, P. and B. Chouet, 1994. Array measurements and modelling of sources of shallow volcanic tremor at Kilauea Volcano, Hawaii. Journal of Geophysical Research, Vol. 99, No. B2, pp. 2637–2652.

    Article  Google Scholar 

  10. Hatzidimitriou, P.M., D. Hatzfeld, E.M. Scordilis, E.E. Papadimitriou and Christodoulou A.A., 1991. Seismotectonic evidence of an active normal fault beneath Thessaloniki (Greece), TERRAMOTAE, pp. 648–654.

    Google Scholar 

  11. Henstridge, J. D., 1979. A signal processing method for circular arrays, Geophysics, 44, pp. 179–184.

    Article  Google Scholar 

  12. Herrmann, R., 1985. Computer programs in seismology, vol. III., Saint Louis University.

    Google Scholar 

  13. Horike, M., 1985. Inversion of phase velocity of long-period microtremors to the S-wavevelocity structure down to the basement in urbanized areas, J. Phys. Earth, 33, pp. 59–96.

    Google Scholar 

  14. Hough, S., L. Seeber, A. Rovelli, L. Malagnini, A. DeCesare, G. Selveggi and A. Lerner-Lam, 1992. Ambient noise and weak motion excitation of sediments resonances: results from Tibel valley, Italy, Bull. Seis. Soc. Am. Vol. 82, No 3, pp. 1186–1205.

    Google Scholar 

  15. IGME, 1995. Geological — Geotechnical map of the city of Thessaloniki, scale 1:5000.

    Google Scholar 

  16. Kanno, T., Kudo K., M. Takahashi, T. Sasatani, S. Ling and H. Okada, 2000. Spatial evaluation of site effects in Ashigara valley based on S-wave velocity structure determined by array observations of micro tremors. Proc. of 12WCEE 2000, pp. 572–580.

    Google Scholar 

  17. Kudo K., T. Kanno, H. Okada, T. Sasatani, N. Morikawa, P. Apostolidis, K. Pitilakis, D. Raptakis, M. Takahasi, S. Ling, H. Nagumo, K. Irikura, S. Higashi and K. Yoshida. SWave Velocity Structure of EUROSEISTE, Volvi, Greece, Determined by the Spatial Auto-Correlation Method applied for Array Records of Microtremors. Proceedings of Earthquake Engineering Symposium, November, 2002, Japan pp. 15–28.

    Google Scholar 

  18. Kudo, K., T. Kanno, H. Okada, O. Ozel, M. Erdik, T. Sasatani, S. Higashi, M. Takahashi and K. Yoshida, 2002. Site specific issues for strong ground motions during the Kocaeli, Turkey Earthquake of August 17, 1999, as inferred from array observations of microtremors and aftershocks, Bull. Seis. Soc. Am., Vol. 92–1.

    Google Scholar 

  19. Lacoss, R. T., E. J. Kelly and M. N. Toksoz, 1969. Estimation of seismic noise structure using arrays, Geophysics, 34, pp. 21–38.

    Article  Google Scholar 

  20. Ling, S., and H. Okada, 1993. An extended use of the spatial autocorrelation method for the estimation of the geological structures using microtremors (in Japanese), Proceedings of the 89th SEGJ Conference, pp. 44–48.

    Google Scholar 

  21. Jongmans, D., 1991. L’ influence des structures geologiques sur l’amplification des ondes sismiques, These de Doctorat, Universite de Liege, Belgium.

    Google Scholar 

  22. Makra, K., D. Raptakis, F. J. Chavez-Garcia and K. Pitilakis, 2001. Site effects and Design Provisions: The case of Euroseistest. J. Pure and Applied Geophysics. 158(2001), pp. 2349–2367.

    Article  Google Scholar 

  23. Matstushima, T., and H. Okada, 1990. Determination of deep geological structure under urban areas using long-period mictrotremor, BUTSURI TANSA, 43–1, pp. 21–33.

    Google Scholar 

  24. Metaxian, J.-P., P. Lesage and J. Dorel, 1997. Permanent tremor at Mesaya Volcano, Nicaragua: wave field analysis and source location, Journal Geophysics Research 102, pp. 22529–22545.

    Google Scholar 

  25. Mokhtar, T.A, R. B. Herrmann, D.B. Russell, 1988. Seismic velocity and Q model for the shallow structure ofthe Arabian shield from short-period Rayleigh waves, Geophysics, 53, No 11, pp. 1379–1387.

    Article  Google Scholar 

  26. Okada H., 1997. A new method of underground structure estimation Using Microtremors. Division of Earth Planetary Sciences, Graduate School of Science, Hokkaido University, Japan, Lecture notes.

    Google Scholar 

  27. Okada, H., T. Matsushima, T. Moriya and T. Sasasatani, T., 1990. An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas (in Japanese), BUTSURI-TANSA, 43, pp. 402–417.

    Google Scholar 

  28. Okada H., 1999. A New Passive Geophysical Exploration Method Using Microtremors. Division of Earth Planetary Sciences, Graduate School of Science, Hokkaido University, Japan, Lecture notes.

    Google Scholar 

  29. Euroseismod, Final Scientific Report, 1999. Development and Experimental Validation of Advanced Modelling Techniques in Engineering Seismology and Earthquake Engineering (Project Co-ordinator K.D. Pitilakis).

    Google Scholar 

  30. Pitilakis, K.D., Anastasiadis, A.I., Raptakis, D.G., 1992. Field and Laboratory Determination of Dynamic Properties of Natural Soil Deposits. Proc. 10th World Conference on Earthquake Engineering, Madrid, Vol. 3, pp. 1275–1280.

    Google Scholar 

  31. Pitilakis, K., D. Raptakis, K. Lontzetidis, Th. Tika-Vassilikou & D. Jongmans, 1999. Geotechnical & geophysical description of EURO-SEISTEST, using field, laboratory tests and moderate strong motion recordings. J. of Earthq. Eng., 3(3), pp. 381–409.

    Google Scholar 

  32. Raptakis, D.G., A.J. Anastasiadis, K.D. Pitilakis and K.S. Lontzetidis, 1994. Shear wave velocities and damping of Greek natural soils. Proc. 10th European Conf. on Earthq. Engng, Vienna, Austria, pp. 477–482.

    Google Scholar 

  33. Raptakis, D., Lontzetidis, K., Pitilakis, K., 1996. Surface Waves Inversion Method: A Reliable Method for the In Situ Measurements of Shear Wave Velocity. Proc. 4eme Colloque Nationale de Genie Parasismique et Aspects Vibratoires dans Ie Genie Civil, Vol. I, pp. 160–169, AF.P.S, 10–12 Avril 1996, Paris, France.

    Google Scholar 

  34. Raptakis, D.G, Anastasiadis, A.J., and K.D. Pitilakis, 1998. Preliminary Instrumental and Theoretical Approach of Site Effects in Thessaloniki. Proc. 11th European Conference on Earthquake Engineering (CDROM), Paris, France.

    Google Scholar 

  35. Raptakis, D.G., Chavez-Garcia F., Makra, K.A and auK.D. Pitilakis, 2000. Site Effects at Euroseistest-I. 2D Determination of the Valley Structure and Confrontation of the Observations with lD Analysis. Soil Dynamics & Earthquake Engineering, 19(1), pp. 1–22.

    Google Scholar 

  36. Raptakis, D., 2000. Soil dynamic testing and geophysical survey for the design of the metro of Thessaloniki. Technical report, Bouygues T. P., (project coordinator K. Pitilakis), pp. 88–103.

    Google Scholar 

  37. Raptakis, D., Apostolidis, P., Kudo, K. and K. Pitilakis, 2002. Vs soil structure definition using the inversion of microtremors and seismic prospecting dispersion data (submitted for publication).

    Google Scholar 

  38. Satoh T., K. Hiroshi and Shin’ichi Matsushima, 2001. Differences between site characteristics obtained from microtremors S-waves, P-waves, and Codas, Bull. Seis. Soc. Am., Vol. 91, 2, pp. 313–324.

    Google Scholar 

  39. Vernon, L., J Fletcher, C. Linda, C. Alan and E. Sembera, 1991. Coherence of Seismic Waves from Events as Measured by a Small-Aperture Array, Journal of Geophysical Research, Vol. 96. No B7, pp. 11981–11996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pitilakis, K. (2003). The Use of Microtremors for Soil and Site Characterisation and Microzonation Applications. In: Wasti, S.T., Ozcebe, G. (eds) Seismic Assessment and Rehabilitation of Existing Buildings. NATO Science Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0021-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0021-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1625-7

  • Online ISBN: 978-94-010-0021-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics