Skip to main content

Strontium Isotope Chemostratigraphy of Rudist Bivalves and Cretaceous Carbonate Platforms

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 28))

Abstract

Strontium concentrations in modern seawater are at 8 ppm. The dominant input flux of the element to seawater is from continental weathering, and precipitation with marine carbonates is its major sink [1], The isotopic composition (87Sr/86Sr) of seawater is controlled by the rate of hydrothermal release of Sr with a low, mantle-derived 87Sr/86Sr value, and by the flux of Sr from continental weathering. This weathering flux has a high 87Sr/86Sr value due the decay of 87Rb in crustal rocks to 87Sr. Therefore, different rates of continental weathering and hydrothermal Sr fluxes, and the isotopic composition of the continental flux, drive changes in the 87Sr/86Sr value of seawater over geological time [2]. The 87Sr/86Sr values of biological carbonates such as low-Mg calcite which is relatively resistant against diagenetic alteration, provide a record of the changing isotopic composition of Sr in seawater during the Phanerozoic [3]. Due to the long residence time of Sr in seawater which is several orders of magnitude longer than that of ocean mixing, concentration and isotopic composition of the element in seawater are homogeneous. Sr isotope ratios are also not affected by dilution with freshwater over a large range of salinity [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turekian, K.K. (1963) Rates of calcium carbonate deposition by deep-sea organisms, molluscs, and the coral-algae association, Nature 197, 277–278.

    Article  Google Scholar 

  2. Veizer, J. (1989) Strontium isotopes in seawater through time, Annual Reviews of Earth and Planetary Sciences 17, 141–167.

    Article  Google Scholar 

  3. Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O.G., Bruckschen, P., Jasper, T., Körte, C., Schaaf, M., Ala, D. and Azmy, K. (1997) Strontium isotope stratigraphy: potential resolution and event correlation, Palaeogeography, Palaeoclimatology, Palaeoecology 132, 65–77.

    Article  Google Scholar 

  4. McArthur, J.M., Kennedy, W.J., Chen, M., Thirlwall, M.F. and Gale, A.S. (1994) Strontium isotope stratigraphy for Late Cretaceous time: direct numerical calibration of the Sr isotope curve based on the US Western Interior, Palaeogeography, Palaeoclimatology, Palaeoecology 108, 95–119.

    Article  Google Scholar 

  5. Howarth, R.J. and McArthur, J.M. (1997) Statistics for strontium isotope stratigraphy. A robust LOWESS fit to the marine Sr-isotope curve for 0-206 Ma, with look-up table for the derivation of numerical age (look-up table version 2:1/98), Journal of Geology 105, 441–456.

    Article  Google Scholar 

  6. McArthur, J.M., Howarth, R.J. and Bailey, T.R. (2001) Strontium isotope stratigraphy: Lowess Version 3. Best-fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age, Journal of Geology 109, 155–170.

    Article  Google Scholar 

  7. Steuber, T. (2001) Strontium isotope stratigraphy of Turonian-Campanian Gosau-type rudist formations in the Northern Calcareous and Central Alps (Austria and Germany), Cretaceous Research 22, 429–441.

    Article  Google Scholar 

  8. Al-Aasm, I.S. and Veizer, J. (1986) Diagenetic stabilization of aragonite and low-Mg calcite, I. Trace elements in rudists, Journal of Sedimentary Petrology 56, 138–152.

    Article  Google Scholar 

  9. Steuber, A. (1999a) Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca: Hippuritacea) — disequilibrium fractionations and Late Cretaceous seasonality, International Journal of Earth Sciences 88, 551–570.

    Article  Google Scholar 

  10. Steuber, T. (2002) Plate tectonic control on the evolution of Cretaceous platform-carbonate production, Geology 30: 259–262.

    Article  Google Scholar 

  11. McArthur, J.M. (1994) Recent trends in strontium isotope stratigraphy, Terra Nova 6, 331–358.

    Article  Google Scholar 

  12. McArthur, J.M., Crame, J.A. and Thirlwall, M.F. (2000) Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy, Journal of Geology 108, 623–640.

    Article  Google Scholar 

  13. Philip, J. (1998a) Rudists — Upper Cretaceous, in P.-C. de Graciansky, J. Hardenbol and P.R. Vail (eds), Mesozoic and Cenozoic sequence stratigraphy of European basins, Society for Sedimentary Geology (SEPM), Special Publication 60, 774–775.

    Google Scholar 

  14. Philip, J. (1998b) Biostratigraphie et paléobiogéographie des rudistes: évolution des concepts et progrès récents. Bulletin de la Société Géologique de France 169, 689–708.

    Google Scholar 

  15. Steuber, T. and Löser, H. (2000) Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a palaeontological database, Palaeogeography, Palaeoclimatology, Palaeoecology 162, 75–104.

    Article  Google Scholar 

  16. Masse, J.-P. (1989) Relations entre modifications biologiques et phénomènes géologiques sur les plates-formes carbonatées du domaine périméditerranéen au passage Bédoulien-Gargasien, Geobios, Mémoire Spécial 11, 279–294.

    Article  Google Scholar 

  17. Masse, J.-P. (1999) Biological crisis and environmental changes in rudist bivalves: The early Cretaceous record, in R. Höfling and T. Steuber (eds.), Fifth International Congress on Rudists — Abstracts and field trip guides, Erlanger Geologische Abhandlungen Sb 3, p. 33.

    Google Scholar 

  18. Skelton, P.W. (2001) Mid-Aptian demise of Tethyan carbonate platforms: a role for climate? in U.G. Wortmann and H. Funk (eds.), IAS 2001 21st meeting, 3–5 September 2001, Davos, Switzerland, Abstracts and Programme, pp. 166–167.

    Google Scholar 

  19. Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., van Veen, P., Thierry, J. and Huang, Z. (1994) A Mesozoic time scale, Journal of Geophysical Research 99 (B12), 24, 051–24, 074.

    Article  Google Scholar 

  20. Steuber, T. (1999b) Cretaceous rudists of Boeotia, central Greece, Special Papers in Palaeontology 61, 1–229.

    Google Scholar 

  21. Steuber, T., Mitchell, S.F., Buhl, D., Gunter, G. and Kasper, H.U. (2002) Catastrophic extinction of Caribbean rudist bivalves at the Cretaceous/Tertiary boundary, Geology 30, 999–1002.

    Article  Google Scholar 

  22. Mitchell, S.F. (1999) Stratigraphy of the Guinea Corn Formation (Upper Cretaceous) at its type locality in the Rio Minho between Grantham and Guinea Corn, northern Clarendon, Jamaica, Journal of the Geological Society of Jamaica 33, 1–12.

    Google Scholar 

  23. Cande, S.C. and Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, Journal of Geophysical Research 100, 6093–6095.

    Article  Google Scholar 

  24. Obradovich, J.D. (1993) A Cretaceous time scale, in W.G.E. Caldwell and E.G. Kauffman (eds.), Evolution of the Western Interior foreland basin, Geological Association of Canada Special Paper 39, 379–396.

    Google Scholar 

  25. Crame, J.A., McArthur, J.M., Pirrie, D. and Riding, J.B. (1998) Strontium isotope correlation of the basal Maastrichtian stage in Antarctica to the European and US biostratigraphic schemes, Journal of the Geological Society, London 156, 957–964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Steuber, T. (2003). Strontium Isotope Chemostratigraphy of Rudist Bivalves and Cretaceous Carbonate Platforms. In: Gili, E., El Hédi Negra, M., Skelton, P.W. (eds) North African Cretaceous Carbonate Platform Systems. NATO Science Series, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0015-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0015-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1607-3

  • Online ISBN: 978-94-010-0015-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics