Skip to main content

Classical and Engineered Breeding for Resistance to Bacterial Plant Diseases

  • Chapter
  • 782 Accesses

Abstract

The aim of breeding for resistance is to obtain a resistant plant which can be grown in economically valuable conditions. It must be, then, a “high quality” plant, whatever is included into this denomination. The starting point of this exercice is classically a high quality, but susceptible, genotype. Its resistance can be improved according to several techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., and Osborn, R. W. 1997. Antimicrobial peptides from plants. Critical Reviews in Plant Sciences 16:297–323.

    CAS  Google Scholar 

  2. Bulk, van den R. W., JAnsen, J., Lindhout, W. H., and Loffler, H. J. M. 1991. Screening of tomato somaclones for resistance to bacterial canker (Clavibacter michiganensis subsp. michiganensis). Plant Breeding 107:190–196.

    Article  Google Scholar 

  3. Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95:6531–6536.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Camargo, L. E. A., Williams, P. H., and Osborn, T. C. 1995. Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 85:1296–1300.

    Article  Google Scholar 

  5. Chevreau, E., Brisset, M. N., Paulin, J. P., and James, D. J. 1998. Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica 104:199–205.

    Article  Google Scholar 

  6. Danesh, D., Aarons, S., McGill G., and Young, N. D., 1994. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol. Plant- Microbe Interact. 7:464–471.

    Article  PubMed  CAS  Google Scholar 

  7. El Attari, H., Rebai, A., Hayes, P. M., Barrault, G., Dechamp-Guillaume, G., and Sarrafi, A. 1998. Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theor. Appl. Genet. 96:95–100.

    Article  Google Scholar 

  8. Gopalan, S., Wei, W., and He, S. Y. 1996. hrp gene-dependent induction of hinl: a plant gene activated rapidly by both harpins and the avrPto gene mediated signal. Plant J. 10:591–600.

    Article  PubMed  CAS  Google Scholar 

  9. Hammerschlag, F. A. 2000. Resistant responses of peach somaclone 122–1 to Xanthomonas campestris pv pruni and to Pseudomonas syringae pv. syringae. HortSci. 351:141–143.

    Google Scholar 

  10. Huang, N., Angeles, E. R., Domingo, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadivel, N., Bennett, J., and Khush G.S., 1997. Pyramiding of bacterial blight resistance genes in rice : marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 95:313–320.

    Article  CAS  Google Scholar 

  11. Jorge, V., Fregene, M. A., Duque, M. C., Bonierbale, M. W., Tohme, J., and Verdier, V. 2000. Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). (pers. com.).

    Google Scholar 

  12. Kousik, C. S., and Ritchie, D. F. 1997. Response of bell pepper cultivars to bacterial spot pathogen races that individually overcome major resistance genes. Plant Dis. 82:181–186.

    Article  Google Scholar 

  13. Larkin, P. J., and Snowcroft, W. R. 1981. Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214.

    Article  PubMed  CAS  Google Scholar 

  14. Li, Z. K., Mei, H. W., Peterson, A. H., Zhoa, X. Z., Zhang, D. G., Wang, Y. P., Yu, X. Q., Zhu, L., Tabien, R., Stansel, J. W., and Ying, C. S. 1999. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol. Gen. Genet. 261:58–63.

    Article  PubMed  CAS  Google Scholar 

  15. Melchinger, A. E. 1990. Use of molecular markers in breeding for oligogenic disease resistance. Plant Breeding 104:1–19.

    Article  Google Scholar 

  16. Mourgues, F., Brisset, M. N., and Chevreau E. 1998. Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends in Biotechnology 16:203–210.

    Article  PubMed  CAS  Google Scholar 

  17. Park, S. O., Coyne, D. P., Mutlu, N., Jung, G., and Steadman, J. R., 1999. Confirmation of molecular markers and flower color associated with QTL for resistance to common bacterial blight in common beans. J. Amer. Soc. Hort. Sci. 124:519–526.

    CAS  Google Scholar 

  18. Pontier, D., Godiard, L., Marco, Y., and Roby, D., 1994. Asr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible pant/pathogen interactions. Plant J. 5:507–521.

    Article  PubMed  CAS  Google Scholar 

  19. Sagi, L. 1998. Molecular plant improvement for resistance to bacterial pathogens. Acta Agr. Hung. 46:179–196.

    Google Scholar 

  20. Tsai, S. M., Nodari, R. O., Moon, D. H., Camargo, L. E. A., Vencovsky, R., and Gepts, P. 1998. QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant and Soil 204:135–145.

    Article  CAS  Google Scholar 

  21. Van Heusden, A. W., Koornneef, M., Voorrips, R. E., Bruggemann., Pet, G., Vrielink Van Ginkel, R., Chen, X., and Lindhout, P. 1999. Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor. Appl. Genet. 99:1068–1074.

    Article  Google Scholar 

  22. Wang, G. L., Song, W. Y., Ruan, D. L., Sideris, S., and Ronald, P. C. 1996. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol. Plant-Microbe Interact. 9:850–855.

    Article  CAS  Google Scholar 

  23. Young, N. D. 1996. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 34:479–501.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paulin, J.P., Brisset, M.N. (2001). Classical and Engineered Breeding for Resistance to Bacterial Plant Diseases. In: De Boer, S.H. (eds) Plant Pathogenic Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0003-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0003-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3858-4

  • Online ISBN: 978-94-010-0003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics