Skip to main content

Endophytic Bacteria and Biocontrol of Plant Diseases

  • Chapter
Plant Pathogenic Bacteria

Abstract

Endophytic bacteria form a large proportion of the indigenous microbial communities in plants. Their internal colonization is often assisted by a wide array of enzymes, which are also present in plant pathogenic bacteria. Endophytic bacteria have become adapted to the plant’s selective environment and can be beneficial, neutral or deleterious for the plant by affecting plant growth and or the defence of the plant against pathogens. In contrast to pathogenic bacteria they do not produce visual symptoms.

The increasing interest in endophytic bacteria for plant health improvement is based on the possible use of beneficial endophytes as: (1) agents in biological control by competition, antibiosis and or induced resistance, (2) carriers of specific chemicals or foreign genes such as the Bt gene for insect control and (3) promoters of plant growth, especially in the young plant stage to survive root attacking soil fungi, based on hormonal or nutritional growth promotion. Studies, so far mainly under controlled conditions, have clearly illustrated the disease protection potential of certain endophytic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azevedo JL, Walter, M Jr, Pereira J D, and Araujo W L de. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. E J B Electr. J. Biotech.3:40–65.

    Google Scholar 

  2. Alstrom, S. 2000a. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology. Accepted.

    Google Scholar 

  3. Bell C R, Dickie G A, Harvey WLG, ChanJWYF. 1995a. Endophytic bacteria in grapevine. Can. J. Microbiology, 41:1, 46–53.

    Article  CAS  Google Scholar 

  4. Bell C R, Dickie G A, Chan J W Y F. 1995b. Variable response of bacteria isolated from grape-vine xylem to control grape crown gall disease in planta. Amer. J. Enology. and Viticulture. 46 (4) 499–508.

    Google Scholar 

  5. Benhamou N, Be‘langer RR and Paulitz T. 1996a. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: host response to colonization by Pythium ultimum, Trow. Planta, 199: 105–117.

    Article  CAS  Google Scholar 

  6. Benhamou N, Kloepper JW, Quadt Hallman A and Tuzun S. 1996b. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology. 112 (3) 919–929.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Benhamou N, Kloepper JW and Tuzun S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta. 204 (2) 153–168.

    Article  CAS  Google Scholar 

  8. Chanway C P. 1996. Endophytes:” They’re not just fungi. Can. J.Botany. 74 (3) 321–322.

    Article  Google Scholar 

  9. Chanway C P. 1998. Bacterial endophytes: Ecological and practical implications. Sydowia.50,149-170.

    Google Scholar 

  10. Chen C., Bauske E M., Rodriguez-Kabana R. and Kloepper J.W. 1995. Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biological Control: theory and applications in pest- management, 5(1) p. 83–91.

    Article  Google Scholar 

  11. Dimock M, Turner J and Lampel J 1993. Endophytic microorganisms for delivery of genetic engeneered microbial pesticides in plants. In: Advanced engeneered Pesticides. Ed; L. Kim pp. 85–97. Dekker, New York.

    Google Scholar 

  12. Dubery I.A. and Coventry, H.S. 2000. Pathogenesis-Related Proteins induced in tobacco by lipopolysaccharides from the endophyte, Burkholderia cepaciae. Abstract: 1st Intern. Symp. “Induced Resistance to Plant Diseases”. Island of Corfu, Greece. 22–27 May. p.120

    Google Scholar 

  13. Dujiff BJ, Gianinazzi Pearson V. and Lemanceau P. 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytologist 135: 325–334.

    Article  Google Scholar 

  14. Fisher, P.J., O. Petrini and H. M. L Scott. 1992. The distribution of same fungal and bacterial endophytes in maize. New Phytologist. 122, 299–305.

    Article  Google Scholar 

  15. Hallmann J, Quadt-Hallmann A, Mahaffee WF and Kloepper JW. 1997.Bacterial endophytes in agricultural crops. Can. Jour. Microbiology. 43 (10) 895–914.

    Article  CAS  Google Scholar 

  16. Kloepper JW, Wei G amd Tuzun S. 1992. Rhizosphere population dynamics and internal colonization of cucumber by plant growth- promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In: EC Tjamos, GC Papavizas and RJ Cook (eds.), Biological Control of Plant Diseases. Plenum press, New York, pp 185–191.

    Chapter  Google Scholar 

  17. Kloepper JW, R. Rodriguez-Kabana, Zehnder GW, J E Murphy, E.Sikora and C.Fernandez. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant path. 28: 21–26.

    Article  Google Scholar 

  18. Kobayashi D.Y. and Palumbo J.D. 2000. Bacterial endophytes and their effects on plants and uses in agriculture. In: Microbial Endophytes. Bacon, C. W. and White, J. F., Jr (eds.). Marcel Dekker, Inc. New York.

    Google Scholar 

  19. Krebs B, Höding B, Kubart S, Alemayehu W M, Junge H, Schmiedekneckt G, Grosch R, Bochow H and Hevesi M.1998. Use of Bacillus subtilis as biological control agent. I. Activities and characterization of Bacillus subtilis strains. Jounal of Plant disease and Protection. 105:181–197.

    Google Scholar 

  20. Li, Hong, D. White, K A Lamza, F Berger and C Leifert. 1997. Biological Control of Botrytis, Phytophthora and Pythium by Bacillus subtilits COTl and CL27 of micropropagated plants in high humidity fogging glasshouses. In: Pathogen and Microbial Contamination Management in Micropopagation, 339–344. A.C, Cassells (ed.). Kluwer Academic Publishers.

    Google Scholar 

  21. Liu L., Kloepper J W and Tuzun S. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth- promoting rhizobacteria. Phytopath. 85: 695–698.

    Article  Google Scholar 

  22. Loeffler W, Tschen SM, Vanittanakom N, KuglerM, Knorpp E, Hsieh T F and Wu TG. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtiltis F-29-3. A comparison with activities of other Bacillus antibiotics. Journal of Phytopathology. 115: 204–213

    CAS  Google Scholar 

  23. Mahaffee W F, Moar W J and Kloepper JW. Bacterial endophytes genetically engineered to express the CryllA delta-endotoxin from Bacillus thuringiensis subsp. kurstaki. Ryder, M H. P.M. Stephens and G. D. Bowen (Ed.). Improving plant productivity with rhizosphere bacteria; Illrd Inter. Workshop on Plant Growth-Promoting Rhizobacteria, Adelaide, Australia, March 7–11, 1994. xii+288p. 245–246.

    Google Scholar 

  24. Mari M, Guizzaedi M and Pratella GC.1996. Biological control of gray mold in pears by antagonistic bacteria. Biological Control, 7: 30–37.

    Google Scholar 

  25. Mclnroy J A and Kloepper JW. 1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 173 (2) 337–342.

    Article  Google Scholar 

  26. Mündt JO, and Hinkle JO. 1976. Bacteria within ovules and seeds. Appl.Env.Microb. 32,694-698.

    Google Scholar 

  27. Nowak J, SK Asiedu, Lazarovits G, Pillay V, A Stewart, C Smith and Z Liu. 1995. Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium. In: Proc. Int. Symp. on Ecophysiology and Photosynthesis in vitro Cultures, 1–3 dec. 1993, Aix- en-Provence, France. Ed. by F.Carre and P. Chagvardieff. Commissariat a’ I’ e’nergie atomique, Cadarache, France. Pp. 173–180.

    Google Scholar 

  28. Nowak J, SK Asiedu, S bensalim, J Richards, A Stewart, C Smith, D Stevens and A V Sturz.1997. From laboratory to applications: Challenges and progress with in vitro dual cultures of potato and beneficial bacteria. In: Pathogen and microbial contamination management in micropropagation, A.C.Cassells (ed.). Kluwer Academic Publishers. Netherlands, pp,321-329.

    Google Scholar 

  29. Pleban S., Ingel F. and Chet I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Euro. J. Plant Pathology. 101 (6) 665–672.

    Article  Google Scholar 

  30. Safiyazov JS, Mannanov RN, and Sattarova RK. 1995. The use of bacterial antagonists for the control of cotton diseases. Field Crops Research 43: 51–54.

    Article  Google Scholar 

  31. Schneider S and WR Ullrich. 1994. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Plant and Molecular Plant pathology. 45: 291–304.

    Article  CAS  Google Scholar 

  32. Song RH, Zhu-Zong Y, Song RH and Zhu ZY. 1998. Isolation and selection of competition root - colonizing and endophytic bacteria from Solanum crops. J. Shanghai Agric. College.16 (2) 127–131.

    Google Scholar 

  33. Sturz A V, Christie BR, Matheson B G, Arsenault W J and Buchanan NA. 1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology. 48 (3): 360–369.

    Article  Google Scholar 

  34. Sturtz A V, Christie B R and Nowak, J 2000. Bacterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences 19:1–30.

    Article  Google Scholar 

  35. Tjamos, E.C.,Tsitsigiannis,D.I., Tjamos,S.E., andPanagopoulos,C.G. 1999a. Selection and Evaluation of Rhizosphere bacteria a biocontrol agents against Verticillium dahliae. APS Press: Advances in Verticillium Research and Disease Management. Editors: E. C. Tjamos, R. Rowe and J. Heale.

    Google Scholar 

  36. Tjamos,S.E., Venieraki, Anastasia, Tsitsigiannis,D.I., Tjamos,E.C., and Katinakis,P. 1999b. Ecology and Activity of two endophytic isolates of Bacillus sp. effective as biocontrol agents against Verticillium dahliae of solanaceous hosts. APS Press: APS Press: Advances in Verticillium Research and Disease Management. Editors: E. C. Tjamos, R. Rowe and J. Heale.

    Google Scholar 

  37. Tuzun S, and Kloepper J. 1994. Induced systemic resistence by plant growth-promoting rhizobcatera. In: Ryder MH, Stephens PM, Bowen GD eds. In : Improving Plant Productivity with Rhizosphere Bacteria. Adlaide: CSIRO, 104–109.

    Google Scholar 

  38. Van Peer R, Niemann GF and Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417r. Phytopathology 81: 728–734.

    Article  Google Scholar 

  39. Wei G, Kloepper JW and Tuzun S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 81:1508–1512.

    Article  Google Scholar 

Download references

Acknowledgements

The Swedish Farmers’ Foundation for Agricultural Research, Stockholm is thanked for supporting this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alström, S., Van Vuurde, J.W.L. (2001). Endophytic Bacteria and Biocontrol of Plant Diseases. In: De Boer, S.H. (eds) Plant Pathogenic Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0003-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0003-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3858-4

  • Online ISBN: 978-94-010-0003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics