ERG Components of the Chicken Retina

  • N. Wioland
  • N. Bonaventure
Part of the Documenta Ophthalmologica Proceedings Series book series (DOPS, volume 15)


Since the early works of Einthoven & Jolly (1908) and of Granit (1933), the gross ERG has been known to be the sum of several potentials of different signs and amplitudes. A good number of models of component analysis have been published on various species (Granit, 1933; Brown, 1968; Ogden & Wylie, 1971;Rodieck, 1972; Knave et al., 1972).


White Light Intensity Range Monochromatic Light Light Adaptation Flash Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonaventure, N., N. Wioland & P. Karli. Brightness coding of white and monochromatic stimuli in the chicken, souslik and rat electroretinogram: relation to light adaptation. Ophthal. Res. 8: 81–92 (1976).CrossRefGoogle Scholar
  2. Brown, K.T. The electroretinogram: its components and their origin. Vision Res. 8: 655–677 (1968).Google Scholar
  3. Einthoven, W. & W.A. Jolly. The form and magnitude of the electrical response of the eye to stimulation by light at various intensities. Q.J. exp. Physiol. 1: 373–416 (1908).Google Scholar
  4. Granit, R. The components of the retinal action potential in mammals and their relation to the discharges in the optic nerve. J. Physiol. Lond. 77: 207–239 (1933).PubMedGoogle Scholar
  5. Knave, B., A. Møller & H.E. Persson. A component analysis of the electroretinogram. Vision Res. 12: 1669–1684 (1972).PubMedCrossRefGoogle Scholar
  6. Knave, B., S.E. Nilsson & T. Lunt. The human electroretinogram: DC recordings at low and conventional stimulus intensities. Acta Ophthal. 51: 716–726 (1973).PubMedCrossRefGoogle Scholar
  7. Knave, B. & H.E. Persson. The effect of barbiturate on retinal functions. I. Effects on the conventional electroretinogram of the sheep eye. Acta Physiol. Scand. 91: 53–60 (1974).PubMedCrossRefGoogle Scholar
  8. Knave, B., H.E. Persson & S.E.G. Nilsson. The effect of barbiturate on retinal functions. II. Effects on the c-wave of the electroretinogram and the standing potential of the sheep eye. Acta Physiol. Scand. 91: 180–186 (1974).PubMedCrossRefGoogle Scholar
  9. Murakami, M. & A. Kaneko. Differentiation of PIII subcomponents in coldblooded vertebrate retinas. Vision Res. 6: 627–636 (1966).PubMedCrossRefGoogle Scholar
  10. Ogden, T.E. & R.M. Wylie. Avian retina. I. Microelectrode depth and marking studies of the local ERG. J. Neurophysiol. 34: 357–366 (1971).PubMedGoogle Scholar
  11. Rodieck, R.W. Components of the electroretinogram; a reappraisal. Vision Res. 12: 775–780 (1972).CrossRefGoogle Scholar
  12. Steinberg, R.H., R. Schmidt & K.T. Brown. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature 227: 728–730 (1970).PubMedCrossRefGoogle Scholar
  13. Taumer, R., N. Rhode, W. Wichmann & J. Röver. Experiments concerning the human c-wave. A v. Grafes Arch. klin. exp. Ophthal. 198: 139–164 (1976).CrossRefGoogle Scholar
  14. Tigges, J., B.A. Brooks & M.R. Klee. ERG recordings of a primate pure cone retina (Tupaia glis). Vision Res. 7: 553–562 (1967).PubMedCrossRefGoogle Scholar
  15. Witkovsky, P., F.E. Dudek & H. Ripps. Slow PIII component of the carp electroretinogram. J. gen. Physiol. 65: 119–134 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Dr W. Junk b.v. Publishers 1978

Authors and Affiliations

  • N. Wioland
    • 1
  • N. Bonaventure
    • 1
  1. 1.Laboratoire de NeurophysiologieCentre de Neurochimie du C.N.R.S.StrasbourgFrance

Personalised recommendations