ERG Components of the Chicken Retina

  • N. Wioland
  • N. Bonaventure
Part of the Documenta Ophthalmologica Proceedings Series book series (DOPS, volume 15)


Since the early works of Einthoven & Jolly (1908) and of Granit (1933), the gross ERG has been known to be the sum of several potentials of different signs and amplitudes. A good number of models of component analysis have been published on various species (Granit, 1933; Brown, 1968; Ogden & Wylie, 1971;Rodieck, 1972; Knave et al., 1972).


Retina Xenon Dura Barbiturate Flaxedil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonaventure, N., N. Wioland & P. Karli. Brightness coding of white and monochromatic stimuli in the chicken, souslik and rat electroretinogram: relation to light adaptation. Ophthal. Res. 8: 81–92 (1976).CrossRefGoogle Scholar
  2. Brown, K.T. The electroretinogram: its components and their origin. Vision Res. 8: 655–677 (1968).Google Scholar
  3. Einthoven, W. & W.A. Jolly. The form and magnitude of the electrical response of the eye to stimulation by light at various intensities. Q.J. exp. Physiol. 1: 373–416 (1908).Google Scholar
  4. Granit, R. The components of the retinal action potential in mammals and their relation to the discharges in the optic nerve. J. Physiol. Lond. 77: 207–239 (1933).PubMedGoogle Scholar
  5. Knave, B., A. Møller & H.E. Persson. A component analysis of the electroretinogram. Vision Res. 12: 1669–1684 (1972).PubMedCrossRefGoogle Scholar
  6. Knave, B., S.E. Nilsson & T. Lunt. The human electroretinogram: DC recordings at low and conventional stimulus intensities. Acta Ophthal. 51: 716–726 (1973).PubMedCrossRefGoogle Scholar
  7. Knave, B. & H.E. Persson. The effect of barbiturate on retinal functions. I. Effects on the conventional electroretinogram of the sheep eye. Acta Physiol. Scand. 91: 53–60 (1974).PubMedCrossRefGoogle Scholar
  8. Knave, B., H.E. Persson & S.E.G. Nilsson. The effect of barbiturate on retinal functions. II. Effects on the c-wave of the electroretinogram and the standing potential of the sheep eye. Acta Physiol. Scand. 91: 180–186 (1974).PubMedCrossRefGoogle Scholar
  9. Murakami, M. & A. Kaneko. Differentiation of PIII subcomponents in coldblooded vertebrate retinas. Vision Res. 6: 627–636 (1966).PubMedCrossRefGoogle Scholar
  10. Ogden, T.E. & R.M. Wylie. Avian retina. I. Microelectrode depth and marking studies of the local ERG. J. Neurophysiol. 34: 357–366 (1971).PubMedGoogle Scholar
  11. Rodieck, R.W. Components of the electroretinogram; a reappraisal. Vision Res. 12: 775–780 (1972).CrossRefGoogle Scholar
  12. Steinberg, R.H., R. Schmidt & K.T. Brown. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature 227: 728–730 (1970).PubMedCrossRefGoogle Scholar
  13. Taumer, R., N. Rhode, W. Wichmann & J. Röver. Experiments concerning the human c-wave. A v. Grafes Arch. klin. exp. Ophthal. 198: 139–164 (1976).CrossRefGoogle Scholar
  14. Tigges, J., B.A. Brooks & M.R. Klee. ERG recordings of a primate pure cone retina (Tupaia glis). Vision Res. 7: 553–562 (1967).PubMedCrossRefGoogle Scholar
  15. Witkovsky, P., F.E. Dudek & H. Ripps. Slow PIII component of the carp electroretinogram. J. gen. Physiol. 65: 119–134 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Dr W. Junk b.v. Publishers 1978

Authors and Affiliations

  • N. Wioland
    • 1
  • N. Bonaventure
    • 1
  1. 1.Laboratoire de NeurophysiologieCentre de Neurochimie du C.N.R.S.StrasbourgFrance

Personalised recommendations