The vegetation of heavy metal and other toxic soils

Part of the Monographiae Biologicae book series (MOBI, volume 31)


The biogeographical investigation of heavy metal and other toxic soils is almost entirely confined everywhere to botanical work. Only recently a first attempt was made in southern Africa to include the animal component into this type of study (Wild 1975). However, even in the botanical field, the distribution of published botanical papers is correlated mainly with the presence of botanists with an interest in this type of investigation. This is particularly true of southern Africa where reasonably detailed studies are available only for Shaba (Katanga) (Duvigneaud 1958, Duvigneaud & Denaeyer de Smet 1960, 1963) and Rhodesia (Wild 1965, 1968, 1970, etc.).


Heavy Metal Endemic Species Serpentine Soil Heavy Metal Soil Heavy Metal Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon. 1959. A flower that led to a copper discovery. Horizon 1(1):35–39.Google Scholar
  2. Antonovics, J. & Bradshaw, A. D. 1970. Evolution in closely adjacent plant populations. VIII. Clinical patterns in Anthoxanthum odoratum across a mine boundary. Heredity 25:349–362.CrossRefGoogle Scholar
  3. Antonovics, J., Bradshaw, A. D. & Turner, R. G. 1971. Heavy metal tolerance in plants. Adv. In Ecol. Res. 7:1–85.CrossRefGoogle Scholar
  4. Bröker, W. 1963. Genetisch-physiologische Untersuchungen über die Zinkvertraglichkeit von Silene inflata Sm. Flora, Jena, B. 153:122–156.Google Scholar
  5. Cannon, H. L. 1971. The use of plant indicators in ground water surveys, geological mapping and mineral prospecting. Taxon 20:227–256.CrossRefGoogle Scholar
  6. Cole, M. M. 1965. The use of vegetation in mineral exploration in Australia. Proc. Commonw. Min. Metall. Congr. 8th, 6:1429–1458.Google Scholar
  7. Cole, M. M. 1971a. The importance of environment in biogeographical/geobotanical and biogeochemical investigations. C.I.M., special volume 11:414–425.Google Scholar
  8. Cole, M. M. 1971b. Biogeographical/geobotanical and biochemical investigations connected with exploration for nickel-copper ores in the hot, wet summer/dry winter savanna woodland environment. J. S. Afr. Inst. Mining and Metallurgy, 1971:199–214.Google Scholar
  9. Drew, A. & Reilly, C. 1972. Observations on copper tolerance in the vegetation of a Zambian copper clearing. J. Ecol. 60:339–444.Google Scholar
  10. Duvigneaud, P. 1958. La végétation du Katanga et de ses sols métallifères. Bull. Soc. Roy. Bot. Belg. 90:127–286.Google Scholar
  11. Duvigneaud, P. 1959. Plantes “cobaltophytes” dans le Haut-Katanga. Bull. Roy. Soc. Bot. Belg. 91:111–134.Google Scholar
  12. Duvigneaud, P. & Danaeyer de Smet, S. 1960. Influence des sols toxiques sur la végétation. Action de certains métaux lourds du sol (cuivre, cobalt, manganese, uranium) sur la végétation dans le Haut Katanga. In: Rapport de sol et de la vegetation, pp. 121–139. Masson, Paris.Google Scholar
  13. Duvigneaud, P. & Denaeyer de Smet, S. 1963. Cuivre et végétation au Katanga. Bull. Soc. Bot. Belg. 93:93–231.Google Scholar
  14. Duvigneaud, P. & Timperman, J. 1959. Etudes sur le genre Crotalaria. Bull. Soc. Roy. Bot. Belg. 91:135–162.Google Scholar
  15. Ernst, W. 1972. Ecophysiological studies in heavy metal plants in South Central Africa. Kirkia 8:125–145.Google Scholar
  16. Ernst, W. 1974. Schwermetallvegetation der Erde. Fischer, Stuttgart.Google Scholar
  17. Ernst, W. & Weinert, H. 1972. Lokalisation von Zink in den Blättern von Silene cucubalus Wib. Zeitschr. für Pflanzenphysiologie 66:255–264.Google Scholar
  18. Fanshawe, D. B., MS. The vegetation of copper clearings in Zambia.Google Scholar
  19. Gigon, A. & Rorison, I. H. 1972. The response of some ecologically distinct plant species to nitrate — and to ammonium-nitrogen. J. Ecol. 60:93–102.CrossRefGoogle Scholar
  20. Heimans, J. 1960. Taxonomic, phytosociological problems around Viola calaminaria Lej. Publ. Natuurhist. Genoot. Limburg 12:55–71.Google Scholar
  21. Horscroft, F. D. M. 1961. Vegetation. In: Mendelsohn, F., The geology of the Northern Rhodesian copper belt. pp. 73–80. Macdonald, London.Google Scholar
  22. Howard-Williams, C. 1969. The ecology of Becium homblei Duvign. & Plancke. M.Phil, thesis, Univ. of London.Google Scholar
  23. Howard-Williams, C. 1970. The ecology of Becium homblei in Central Africa with special reference to metalliferous soils. J. Ecol. 58:741–763.Google Scholar
  24. Howard-Williams, C. 1971a. Morphological variation between isolated populations of Becium homblei growing on heavy metal soils. Vegetatio 23:141–151.Google Scholar
  25. Howard-Williams, C. 1971b. Environmental factors controlling the growth of plants on heavy metal soils. Kirkia 8:91–102.Google Scholar
  26. Jacobsen, W. B. G. 1967. The influence of the copper content of the soil on the trees and shrubs of Molly South Hill, Mangula. Kirkia 6:63–83.Google Scholar
  27. Jacobsen, W. B. G. 1968. The influence of the copper content of the soil on the vegetation at Silver-side North, Mangula area. Kirkia 6:259–277.Google Scholar
  28. Jacobsen, W. B. G. 1970. Further notes on the vegetation of copper bearing soils at Silverside. Kirkia 7:285–290.Google Scholar
  29. Jain, S. K. & Bradshaw, A. D. 1966. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21:407–441.CrossRefGoogle Scholar
  30. James, C. H. 1957. The geochemical dispersion of arsenic and antimony related to gold mineralisation in Southern Rhodesia. Imp. Coll. Geochem. Prospecting Res. Centre, Tech. Publ. 12:1–238.Google Scholar
  31. King, L. C. 1962. The morphology of the earth. Oliver & Boyd, Edinburgh.Google Scholar
  32. Kruckeberg, A. R. 1954. The ecology of serpentine soils. 2. Plant species in relation to serpentine soils. Ecology 35:267–274.Google Scholar
  33. Kruckeberg, A. R. 1969. Plant life on serpentinite and other ferromagnesian rocks in northwest N. America. Syesis 2:15–114.Google Scholar
  34. Linstow, O. von. 1929. Bodenanzeigende Pflanzen. Abhandl. Preuss. Geol. Landesanst. N.F. 114.Google Scholar
  35. McNeilly, T. 1968. Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine. Heredity 23:99–108.CrossRefGoogle Scholar
  36. Proctor, J. & Woodell, S. R. J. 1975. The ecology of serpentine soils. Adv. Ecol. Res. 9:255–366.CrossRefGoogle Scholar
  37. Real, F. 1962. O Maciço ultrabasico do Monte Atchiza (Moçambique) — Reconhecimento geologico-mineiro. Estudos Cientificos Oferecidos ão Prof. Carrington de Costa: 607–663.Google Scholar
  38. Reilly, C. 1969. The uptake and accumulation of copper by Becium homblei. New Phytol. 68:1081–1087.CrossRefGoogle Scholar
  39. Robyns, W. 1932. Over plantengroei en flora der Kopervelden van Opper-Katanga. Natuurwet. Tijdschr. 14:101–106.Google Scholar
  40. Schmitz, A. 1963. Aperçu sur les groupements végétaux du Katanga. Bull. Soc. Roy. Bot. Belg. 96:233–447.Google Scholar
  41. Severne, B. C. & Brooks, R. R. 1972. A nickel accumulating plant from Western Australia. Planta (Berl.) 10:91–94.CrossRefGoogle Scholar
  42. Soane, B. D. & Saunder, D. H. 1959. Nickel and chromium toxity of serpentine soils in S. Rhodesia. Soil Sci. 88:322–330.Google Scholar
  43. Stebbins, G. L. 1942. The genetic approach to rare and endemic species. Madroño 6:241–272.Google Scholar
  44. Takhtajan, A. 1969. Flowering plants: origin and dispersal. (Trans. C. Jeffrey.) Oliver & Boyd, Edinburgh.Google Scholar
  45. Theron, G. K. 1975. The distribution of summer rainfall zone Protea species in S. Africa with special reference to the ecology of Protea caffra. Boissiera 24:233–244.Google Scholar
  46. Thomas, P. I. 1972. Ecological and biogeochemical investigations at Nkai, Rhodesia. M.Phil, thesis, University of London.Google Scholar
  47. Walker, R. B. 1954. The ecology of serpentine soils. 2. Factors affecting growth on serpentine soils. Ecology 35:259–266.Google Scholar
  48. Walley, K. A., Khan, S. I. & Bradshaw, A. D. 1974. The potential for evolution of heavy metal tolerance in plants. 1. copper and zinc tolerance in Agrostis tenuis. Heredity 32:309–319.CrossRefGoogle Scholar
  49. Warren, V. H., Delavault, R. E. & Barakso, J. 1964. The role of arsenic as a pathfinder in biogeochemical prospecting. Econ. Geol. 59:1381–1389.CrossRefGoogle Scholar
  50. Wild, H. 1964. The endemic species of the Chimanimani Mountains and their significance. Kirkia 4:125–157.Google Scholar
  51. Wild, H. 1965. The flora of the Great Dyke of S. Rhodesia with special reference to the serpentine soils. Kirkia 5:49–86.Google Scholar
  52. Wild, H. 1968a. Geobotanical anomalies in Rhodesia. I — The vegetation of copper bearing soils. Kirkia 7:1–71.Google Scholar
  53. Wild, H. 1968b. Phytogeography in South Central Africa. Kirkia 6:197–222.Google Scholar
  54. Wild, H. 1970. Geobotanical anomalies in Rhodesia. 3 — The vegetation of nickel bearing soils. Kirkia 7, Suppl.: 1–62.Google Scholar
  55. Wild, H. 1971. The taxonomy, ecology and possible method of evolution of a new metalliferous species of Dicoma Cass. (Compositae). Mitt. Bot. Staatssamml. München 10:266–274.Google Scholar
  56. Wild, H. 1974a. Variations in the serpentine flora of Rhodesia. Kirkia 9:209–232.Google Scholar
  57. Wild, H. 1974b. Indigenous plants and chromium in Rhodesia. Kirkia 9:233–241.Google Scholar
  58. Wild, H. 1974c. Geobotanical anomalies in Rhodesia. 4 — The vegetation of arsenical soils. Kirkia 9:243–264.Google Scholar
  59. Wild, H. 1974d. The natural vegetation of gypsum bearing soils in South Central Africa. Kirkia 9:249–292.Google Scholar
  60. Wild, H. 1975. Termites and the serpentines of the Great Dyke of Rhodesia. Trans. Rhod. Sci. Ass. 57:1–11.Google Scholar
  61. Wild, H. & Heyting, A. 1966. An analysis of variation of leaf dimensions in Becium homblei and Becium obovatum. Lund Bot. Notiser 119:308–316.Google Scholar
  62. Wildeman, E. de. 1921. Contribution a I’étude de la flore du Katanga. Comité Special du Katanga, Bruxelles.CrossRefGoogle Scholar
  63. Wiltshire, G. H. 1972. Effect of nitrogen source on translocation of nickel in some crop plants and weeds. Kirkia 8:103–123.Google Scholar
  64. Wiltshire, G. H. 1974. Growth of plants from two metalliferous sites in Rhodesia. J. Ecol. 62:501–525.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk bv Publishers The Hague 1978

Authors and Affiliations

  • H. Wild

There are no affiliations available

Personalised recommendations