Skip to main content

Flocculation in Mineral Processing

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSE,volume 27))

Abstract

Flocculation is a characteristic property of colloidal dispersions. The typical classical sol contained sub-microscopic dispersed particles which would pass freely through ordinary filter-paper, and were too small to be resolved by any transmission optical microscope. Consequently, an arbitrary size limit of 0.1 μm could be defined as the upper size boundary of the colloidal range. However, this distinction between “true” colloids and frank fine-particle dispersions was undermined in 1903 with the invention of the optical ultra-microscope of Siendentopf and Zsigmondy, which showed that even classical gold sols, etc. were particulate in character and could be prepared with a great range of particle size. Nowadays, the electron microscope has finally removed any vestige of significance of a visibility barrier at 0.1 μm and so it has become necessary to reconsider the upper size limit of the “colloidal” range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ralston, J. and Kitchener, J.A., The surface chemistry of amosite asbestos. J. Coll. Int. Sci., 50, 242–249, 1975.

    Article  CAS  Google Scholar 

  2. Cases, J.M., Point de charge nulle et structure des silicates. J. Chim. Phys. 66, 1602–1611, 1969.

    CAS  Google Scholar 

  3. Warren, L.J. and Kitchener, J.A., Role of fluoride in the flotation of feldspar: adsorption on quartz, corundum and potassium feldspar. Trans. Instn. Min. Metal, (c), 81, C137–148, 1972.

    Google Scholar 

  4. Overbeek, J. Th. G., in Kruyt, H.R. (Edit.) Colloid Science (Elsevier, Amsterdam) 1952 p. 291.

    Google Scholar 

  5. e.g. Firth, B.A. and Hunter, R.J., Flow properties of coagulated colloidal suspensions, Pt. I-III. J. Coll. Int. Sci., 57, 248–275, 1976.

    CAS  Google Scholar 

  6. Yusa, M. and Gaudin, A.M., Formation of pellet-like floes of kaolinite by polymer chains. Ceram. Bull., 45, 402–406, 1964.

    Google Scholar 

  7. Edwards, B.C., Role of polymeric flocculants in sediment removal in condenser cooling systems. J. Appl. Chem. 19, 141–146, 1969.

    Article  CAS  Google Scholar 

  8. Friend, J.P. and Kitchener, J.A., Some physico-chemical aspects of the separation of finely-divided minerals by selective flocculation. Chem. Engng. Sci. 28, 1071–1080, 1973.

    Article  CAS  Google Scholar 

  9. Kane, J.C. LaMer, V.K. and Linford, H.B., The filtration of silica dispersions flocculated by high polymers. J. Phys. Chem., 61, 1977–1981, 1963.

    Article  Google Scholar 

  10. Baskerville, R.C. and Gale, R.S., A simple automatic instrument for determining the filtrability of sewage sludges J. Water Pollut. Control, 67, 233–241, 1968.

    Google Scholar 

  11. Slater, R.W. and Kitchener, J.A., Characteristics of flocculation of mineral suspensions by polymers, Faraday Soc. Discn. 42, 267–275, 1966.

    Article  Google Scholar 

  12. Gaudin, A.M., Fuerstenau, D.W. and Miaw, H.L., Slime-coatings in galena flotation. Can. Min. Metall. Bull. 53, 960–963, 1960.

    Google Scholar 

  13. van Olphen, H., Bheological phenomena of clay sols in connection with the charge distribution on the micelles. Discn. Faraday Soc. No. 11, 82–84, 1951.

    Article  Google Scholar 

  14. Schofield, R.K. and Samson, H.R., Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Discn. Faraday Soc. No. 18, 135–145, 1954.

    Article  CAS  Google Scholar 

  15. Healy, T.W., Wiese, G.R., Yates, D.E. and Kavanagh, B.V., Heterocoagulation in mixed oxide colloidal dispersions. J. Coll. Int. Sci., 42, 647–649, 1949.

    Article  Google Scholar 

  16. Schindler, P.W., Fürst, B., Dick, R. and Wolf, P.U. Ligand properties of surface solanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+. J. Coll. Int. Sci., 55, 469–475, 1976.

    Article  CAS  Google Scholar 

  17. Ferris, A.P. and Jepson, W.B. The exchange capacities of kaolinite and the preparation of homoionic clays. J. Coll. Int. Sci., 51, 245–259, 1975.

    Article  CAS  Google Scholar 

  18. Jepson, W.B. and Rowse, J.B. The composition of kaolinite-an electron microprobe study. Clays Clay Min. 23, 310–317, 1975.

    Article  CAS  Google Scholar 

  19. Lorenz, P.B. Surface conductance and electrokinetic properties of kaolinite beds. Clays Clay Min. 17, 223–231, 1969.

    Article  CAS  Google Scholar 

  20. Follett, E.A.C. The retention of amorphous colloidal “ferric hydroxide” by kaolinites, J. Soil Sci. 16, 334–341, 1965.

    Article  CAS  Google Scholar 

  21. Weiss, A. and Russow, J. Über die Lage der austauschbaren Kationen bei Kaolinit. Proc. Int. Clay Conf. Stockholm 1, 203–213, 1963.

    Google Scholar 

  22. Johnson, A.L. and Norton, F.H., Fundamental study of clay: preparation of a purified kaolinite suspension, I. J. Amer. Ceram. Soc. 24, 64–69, 1941.

    Article  CAS  Google Scholar 

  23. Beazley, K.M. (a) Factors influencing dilatant behaviour in china clay suspensions. Trans. Brit. Ceram. Soc., 64, 531–548, 1965.

    Google Scholar 

  24. Beazley, K.M. (b) Low shear viscosity measurements on deflocculated kaolin suspensions J.T.A.P.P.I. 50, 151–155, 1967.

    CAS  Google Scholar 

  25. van Olphen, H. Internal mutual flocculation in clay suspensions. J. Coll. Sci. 19, 313–322, 1964.

    Article  Google Scholar 

  26. Schofield, R.K. and Samson, H.R., Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Faraday Soc. Discn. No. 18, 135–145, 1954.

    Article  CAS  Google Scholar 

  27. (a) Gould, R.E., Lux, J.F., West, R.R. and Coffin, L.B., How to produce a better white ware with high intensity clay dispersion. Ceram. Ind. 71, 124–127, 1958.

    CAS  Google Scholar 

  28. West, R.R. and Coffin, L.B. Casting of ware with highly dispersed clay bodies. Bull. Amer. Ceram. Soc. 39, 462–464, 1960.

    Google Scholar 

  29. Flint, L.R. and Howarth, W.J. The collision efficiency of small particles with spherical air bubbles, Chem. Engng. Sci. 26, 1155–1168, 1971.

    Article  CAS  Google Scholar 

  30. Reay, D. and Ratcliff, G.A., Removal of fine particles from water by dispersed air flotation: effects of bubble size and particle size on collection efficiency. Can. J. Chem. Engng., 51, 178–185, 1973.

    Article  CAS  Google Scholar 

  31. Greene, E.W., Duke, J.B. and Hunter, J.L. Froth flotation method. U.S. Patent 2, 990, 958, 1961.

    Google Scholar 

  32. Shergold, H.L. and Lofthouse, C.H., The purification of kaolins by two-liquid separation process. 12th Int. Cong. Min. Process. Sao Paulo, 1977 in the press.

    Google Scholar 

  33. Oder, R.R. and Price, C.R., Brightness beneficiation of kaolin clays by magnetic treatment. TAPPI, 56, 75–78, 1973.

    CAS  Google Scholar 

  34. Watson, J.H.P., Clark, N.O. and Windle, W. A superconducting magnetic separator and its application in improving ceramic materials. Proc. 11th Int. Min. Proc. Congress, Cagliari, 795-812, 1975.

    Google Scholar 

  35. Maynard, R.N., Skipper, B.R. and Millman, N. Purifying clays U.S. Pat. 3, 371, 988, 1968.

    Google Scholar 

  36. Maynard, R.N. Rapid selective flocculation of titanium dioxide out of kaolin slurries. W. German Pat. 2, 329, 455, 1974: U.S. Pat. 263,730, 1972.

    Google Scholar 

  37. Gwilliam, R.O., The E.C.C. tube filter press. Filtration Sepn., 8,, 173–180, 1971.

    Google Scholar 

  38. Ruehrwein, R.A. and Ward, D.W., Mechanism of clay aggregation by polyelectrolytes. Soil Sci. 73, 485–492, 1952.

    Article  CAS  Google Scholar 

  39. Michaels, A.S., Aggregation of suspensions by polyelectrolytes Ind. Eng. Ghem., 46, 1485–1490, 1954.

    Article  CAS  Google Scholar 

  40. Montgomery, R.S. and Hibbard, B.B., Theoretical aspects of soil-conditioning activity of polymers. Soil Sci. 79, 283–292, 1953.

    Article  Google Scholar 

  41. Linke, W.F. and Booth, R.D., Physical chemical aspects of flocculation by polymers. Trans. Amer. Instn. Min. Metall. Engrs., 212, 364–377, 1959.

    Google Scholar 

  42. McCarty, M.E. and Olsen, R.S., Polyacrylamides for the mining industry. Mining Eng. 11, 61–64, 1959.

    CAS  Google Scholar 

  43. Kuz’kin, S.K. and Nebera, V.P., Synthetic Flocculants in Dewatering Processes. (Trans. J.E. Baker) National Lending Library, Boston Spa, Yorks. 1966.

    Google Scholar 

  44. Dell, C.C., The dewatering of polyclay suspensions, Powder Techn., 7, 189–204, 1973.

    Article  CAS  Google Scholar 

  45. O’Gorman, J.V. and Kitchener, J.A., The flocculation and dewatering of kimberlite clay slimes, Int. J. Mineral Process., 1, 33–49, 1973.

    Article  Google Scholar 

  46. Wright, H.J.L. and Kitchener, J.A., The problem of de-watering clay slurries: factors controlling filtrability. J. Coll. Int. Sci. 56, 57–63, 1976.

    Article  CAS  Google Scholar 

  47. Collins, D.N. and Read, A.D., The treatment of slimes, Minerals Sci. Engng., 3, 19–31, 1971.

    CAS  Google Scholar 

  48. Kitchener, J.A. Surface chemistry in mineral processing, Chem. and Ind. 18th Jan. 1975, 54-58.

    Google Scholar 

  49. Read, A.D. and Hollick, C.T. Selective flocculation techniques for recovery of fine particles. Mineral Sci. Engng., 8, 202–213, 1976.

    CAS  Google Scholar 

  50. Dimitrova and Stoev, S., Selective Flocculation. (Technika, Sofia) 1976, Pp. 130. (in Bulgarian).

    Google Scholar 

  51. Pugh, R.J. and Kitchener, J.A., Theory of selective coagulation of mixed colloidal suspensions. J. Coll. Int. Sci., 35, 656–664, 1971.

    Article  CAS  Google Scholar 

  52. Pugh, R.J. and Kitchener, J.A., Experimental confirmation of selective coagulation in mixed colloidal suspensions. J. Coll. Int. Sci., 38, 656–657, 1972.

    Article  CAS  Google Scholar 

  53. Pugh, R.J. Selective coagulation in quartz-hematite and quartz-rutile suspensions, Coll. Polymer. Sci., 252, 400–406, 1974.

    Article  CAS  Google Scholar 

  54. cf. (33): Maynard, R.N., Skipper, B.R. and Millman, N., Improving the color of kaolin clays by removal of titanium or iron impurities. W. German Pat. 1, 936, 219, 1970.

    Google Scholar 

  55. Maynard, R.N., Millman, N. and Iannicelli, J., A method of removing titanium dioxide impurities from kaolin. Clays and Clay Minerals, 17, 59–62, 1969.

    Article  CAS  Google Scholar 

  56. Private communication from Professor M.G. Fleming.

    Google Scholar 

  57. Blake, T.D. and Kitchener, J.A., Stability of aqueous films on hydrophobic methylated silica. J. Chem. Soc. Faraday Trans. I. 68, 1435–1442, 1972.

    Article  CAS  Google Scholar 

  58. Schulze, H.J., Stability of thin liquid films on hydrophobic quartz surfaces. Proc. Int. Conf. Surf. Sci., Budapest 1975 Edit. E. Wolfram (Elsevier, Amsterdam), pp. 179–186.

    Google Scholar 

  59. Derjaguin, B.V. and Churaev, N.N., Structural component of disjoining pressure. J. Coll. Int. Sci., 49, 249–255, 1974.

    Article  Google Scholar 

  60. Puddington, I.E. and Sparks, B.D., Spherical agglomeration processes. Minerals Sci. Engng., 7, 282–288, 1975.

    CAS  Google Scholar 

  61. Cooke, S.R.B., Schulz, N.T. and Lindroos, E.W., The effect of certain starches on quartz and hematite suspensions. Min. Engng. N.Y., 4, 697–698, 1952.

    Google Scholar 

  62. Usoni, L., Rinelli, G., Marabini, A.M. and Ghigi, G., Selective properties of flocculants and possibilities of their use in the flotation of finely ground ores. 8th Int. Min. Proc.-Cong., Leningrad, 1968. Paper D-13 cf. Ind. Min. Roma, 20, 167–169, 172-182, 1969.

    Google Scholar 

  63. Slater, R.W., Clark, J.P. and Kitchener, J.A., Chemical factors in the flocculation of mineral slurries. Proc. Brit. Ceram. Soc, 13, 1–12, 1969.

    Google Scholar 

  64. Rubio, J. and Kitchener, J.A., The mechanism of adsorption of poly(ethylene oxide) flocculant on silica. J. Coll. Int. Sci. 57, 132–142, 1976.

    Article  CAS  Google Scholar 

  65. Rubio, J. and Kitchener, J.A., to be published.

    Google Scholar 

  66. Attia, Y.A.I, and Kitchener, J.A., Development of complexing polymers for the selective flocculation of copper minerals. Proc. 11th Int. Mineral Proc. Congress, Cagliari, 1975, 1233-1249.

    Google Scholar 

  67. Clauss, C.R.A., Appleton, E.A. and Vink, J.J., Selective flocculation of cassiterite in mixtures with quartz using a modified polyacrylamide flocculant, Int. J. Min. Process., 1, 27–34, 1976.

    Article  Google Scholar 

  68. Yarar, B. and Kitchener, J.A., Selective flocculation of minerals. 1. Basic principles. 2. Experimental investigation of quartz, calcite and galena. Trans. Instn. Min. Metall. 79, C23–35, 1970.

    CAS  Google Scholar 

  69. Friend, J.P., Iskra, J. and Kitchener, J.A., Cleaning a selectively flocculated mineral slurry, Trans. Instn. Min. Metall. (C) 82, C235–236, 1973.

    Google Scholar 

General Monographs relevant to the aqueous chemistry and surface chemistry of minerals

  • Amer. Chem. Soc: Divn. of Water, Air and Waste Chemistry. Equilibrium Concepts in Natural Water Systems (A.C.S. Washington) 1967.

    Google Scholar 

  • *Fuerstenau, M.C. Flotation: A.M. Gaudin Memorial Volume. (Amer. Inst. Min. Met. Petr. Engnrs., New York) 1976.

    Google Scholar 

  • Gard, J.A. (Edit.) The Electron-Optical Investigation of Clays. (Mineralogical Society, London) 1971.

    Google Scholar 

  • Garrels, R.M. and Christ, C.L., Solutions, Minerals and Equilibria. (Harper & Row, New York) 1965.

    Google Scholar 

  • Grimm, R.E. Clay Mineralogy. (McGraw-Hill, New York) 2nd edn. 1968.

    Google Scholar 

  • Loughnan, F. Chemical Weathering of the Silicate Minerals, (Elsevier, New York) 1969.

    Google Scholar 

  • Ney, P., Zeta-potentiale und Flotierbarkeit von Mineralen (Springer-Verlag, Vienna) 1973 (in German).

    Google Scholar 

  • Stumm, W. and Morgan, J.J. Aquatic Chemistry: an introduction emphasizing chemical equilibria in natural waters. (Wiley-Interscience, New York) 1970.

    Google Scholar 

  • Van Olphen, H. An Introduction to Clay Colloid Chemistry (Interscience, New York) 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Sijthoff & Noordhoff International Publishers B.V.

About this chapter

Cite this chapter

Kitchener, J.A. (1978). Flocculation in Mineral Processing. In: Ives, K.J. (eds) The Scientific Basis of Flocculation. NATO Advanced Study Institutes Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9938-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9938-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9940-4

  • Online ISBN: 978-94-009-9938-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics