In this chapter we describe representative examples of spacecraft hardware used for both attitude determination and attitude control. Extensive hardware experimentation has taken place over the 20-year history of spaceflight. Although this experimentation and development is still continuing, a variety of basic functional types of attitude hardware have emerged. This chapter describes the physical characteristics and operating principles of a variety of sensors. The mathematical models associated with these sensors are presented in Chapter 7. Additional summaries of attitude hardware are given by Fontana, et al., [1974], Hatcher [1967], and Schmidtbauer, et al., [1973]. A summary of attitude hardware for specific spacecraft is given in Appendix I.


Gray Code Star Tracker Reaction Wheel Star Sensor Onboard Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, D. J., Hardware Technical Summary for IVE Fine Error Sensor, Ball Brothers Research Corp., TN74–51, Oct. 1974.Google Scholar
  2. 2.
    Adcole Corp., Sun Angle Sensor Systems Short Form Catalog, Feb. 1975.Google Scholar
  3. 3.
    Adcole Corp., Design Review Data Package Fine Pointing Sun Sensor for Solar Maximum Mission, Oct. 1977.Google Scholar
  4. 4.
    Astheimer, Robert W., “Instrumentation for Infrared Horizon Sensing,” Proceedings of the Symposium on Spacecraft Attitude Determination, Sept. 30, Oct. 1–2, 1969, El Segundo, CA; Air Force Report No. SAMSO-TR-69-417, Vol. I; Aerospace Corp. Report No. TR-0066(5306)-12, Vol. I, 1969.Google Scholar
  5. 5.
    Au, G. F. and S. F. J. Baumgarth, “Ion Thruster ESKA 8 for North-South Stationkeeping of Synchronous Satellites,” J. Spacecraft, Vol. 11, p. 618–620, 1974.CrossRefGoogle Scholar
  6. 6.
    Barnes Engineering Co., Infrared Detectors, Thermal and Photon, Barnes Engineering Bulletin 2-350A, 1976.Google Scholar
  7. 7.
    Bloom, A. L., “Principles of Operation of the Rubidium Vapor Magnetometer,” Applied Optics, Vol. 1, p. 61–68, 1962.CrossRefGoogle Scholar
  8. 8.
    Chubb, W. B., H. F. Kennel, C. C. Rupp and S. M. Seltzer, “Flight Performance of Skylab Attitude and Pointing Control System,” J. Spacecraft, Vol. 12, p. 220–227, 1975.CrossRefGoogle Scholar
  9. 9.
    Cleavinger, R. L., and W. F. Mayer, Attitude Determination Sensor for Explorer 53, AIAA Paper No. 76–114, AIAA 14th Aerospace Sciences Meeting, Wash. DC, Jan. 1976.Google Scholar
  10. 10.
    Coon, T. R., and J. E. Irby, “Skylab Attitude Control System,” IBM Journal of Research and Development, Jan. 1976.Google Scholar
  11. 11.
    Dehmelt, H. G., “Modulation of a Light Beam by Precessing Absorbing Atoms,” Phys. Rev. 2nd Series, Vol. 105, p. 1924–1925, 1957.Google Scholar
  12. 12.
    DeMott, A., Preliminary Study of Onboard Attitude Control for the Multi-Mission Modular Spacecraft. Comp. Sc. Corp., Feb. 1976.Google Scholar
  13. 13.
    Ebel, B., In Flight Performance of the French German Three-Axis Stabilized Telecommunications Satellite SYMPHONIE, AIAA Paper No. 75–099, AAS/ AIAA Astrodynamics Specialist Conference, Nassau, Bahamas, July 1975.Google Scholar
  14. 14.
    Farthing, W. H. and W. C. Folz, “Rubidium Vapor Magnetometer for Near Earth Orbiting Spacecraft,” Rev. Sci Instr., Vol. 38, p. 1023–1030, 1967.CrossRefGoogle Scholar
  15. 15.
    Fontana, R., R. Baldassini, and G. Simoncini, Attitude Sensors Review and General Applications, Vol. 2 of Study of Detection and Estimation Techniques Applied to Attitude Measurements of Satellites, ESRO, ESRO-CR(P)-551, April 1974.Google Scholar
  16. 16.
    Fountain, G. H., SAS-B Star Sensor Telemetry Data, Applied Physics Laboratory, S2P-2-499, Feb. 1972.Google Scholar
  17. 17.
    Gates, R. F., and K. J. McAloon, A Precision Star Tracker Utilizing Advanced Techniques, AIAA Paper No. 76–113, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.Google Scholar
  18. 18.
    General Electric Space Systems, Earth Resources Technology Satellite Image Annotation Processing (IAP) Software Description, Document 71SD5216, Valley Forge Space Center, Oct. 1971.Google Scholar
  19. 19.
    Geyger, W. A., Non-linear Magnetic Control Devices. New York: McGraw-Hill, Inc., Chapters 13 and 14, 1964.Google Scholar
  20. 20.
    Gottlieb, D. M., C. M. Gray, and L. Fallon, High Energy Astronomy Observatory-A (HEAO-A) Star Tracker Assembly Description, Comp. Sc. Corp., CSC/TM-75/6203, June 1976.Google Scholar
  21. 21.
    Grabbi, R. and C. K. Murch, “High Performance Electrothermal Hydrazine Thruster (Hi PEHT) Development, ” AIAA Paper No. 76–656, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.Google Scholar
  22. 22.
    Gray, C. M., L. Fallon, D. M. Gottlieb, M. A. Holdip, G. F. Meyers, J. A. Niblack, and M. Rubinson, High Energy Astronomy Observatory-A (HEAO-A) Attitude Determination System Specifications and Requirements, Comp. Sc. Corp., CSC/SD-76/6001, Feb. 1976.Google Scholar
  23. 23.
    Greensite, A. L., Control Theory: Volume II, Analysis and Design of Space Vehicle Plight Control Systems. New York: Spartan Books, 1970.Google Scholar
  24. 24.
    Grivet, P. A. and L. Malner, “Measurement of Weak Magnetic Fields by Magnetic Resonance,” Advances in Electronics and Electron Physics. New York: Academic Press, p. 39–151, 1967.Google Scholar
  25. 25.
    Hatcher, Norman M., A Survey of Attitude Sensors for Spacecraft, NASA SP-145, 1967.Google Scholar
  26. 26.
    Hoffman, D. P., “HEAO Attitude Control Subsystem—A Multimode/-Multimission Design,” Proceedings AIAA Guidance and Control Conference, San Diego, CA, Aug. 1976.Google Scholar
  27. 27.
    Holcomb, L., L. Mattson, and R. Oshiro, “The Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance,” AIAA Paper No. 76–659, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.Google Scholar
  28. 28.
    Hotovy, S. G., M. G. Grell, and G. M. Lerner, Evaluation of the Small Astronomy Satellite-3 (SAS-3) Scanwheel Attitude Determination Performance, Comp. Sc. Corp., CSC/TR-76/6012, July 1976.Google Scholar
  29. 29.
    Jackson, John David, Classical Electrodynamics. New York: John Wiley & Sons, Inc., 1965.Google Scholar
  30. 30.
    Junge, Hinrich J., and Uwe W. Sprengel, “Direct Thrust Measurements and Beam Diagnostics on an 18-cm Kaufman Ion Thruster,” J. Spacecraft, Vol. 10, p. 101–105, 1973.CrossRefGoogle Scholar
  31. 31.
    Koso, D. A. and J. C. Kollodge, “Solar Attitude Reference Sensors,” Proceedings of the Symposium on Spacecraft Attitude Determination, Sept. 30, Oct. 1–2, 1969, El Segundo, CA; Air Force Report No. SAMSO-TR-69-417, Vol. I; Aerospace Corp. Report No. TR-0066(5306)-12, Vol. I, 1969.Google Scholar
  32. 32.
    LeGrives, E. and J. Labbe, “French Research on Cesium Contact Ion Sources,” J. Spacecraft., Vol. 10, p. 113–118, 1973.CrossRefGoogle Scholar
  33. 33.
    Massart, J. A., A Survey of Attitude Related Problems for a Spin-Stabilized Satellite on a Highly Eccentric Orbit, ESOC Internal Note 152, Aug. 1974.Google Scholar
  34. 34.
    Merwarth, A., Multimission Modular Spacecraft (MMS) Onboard Computer (OBC) Flight Executive Definition, NASA S-700–55, March 1976.Google Scholar
  35. 35.
    Mobley, F. F., Konigsberg, K., and Fountain, G. H., Attitude Control System of the SAS-C Satellite, AIAA Paper No. 74–901; AIAA Mechanics and Control of Flight Conference, Anaheim, CA., Aug. 1974.Google Scholar
  36. 36.
    Moore, W., and W. Prensky, Applications Technology Satellite, ATS-6, Experiment Check-out and Continuing Spacecraft Evaluation Report, NASA X-460-74-340, Dec. 1974.Google Scholar
  37. 37.
    Murch, C. K., R. L. Sackheim, J. D. Kuenzly, and R. A. Callens, “Non-catalytic Hydrazine Thruster Development, 0.050 to 5.0 Pounds Thrust,” AIAA Paper No. 76–658, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.Google Scholar
  38. 38.
    NASA, NASA Standard Spacecraft Computer-II (NSSC-II).CAT. NO. 4.006, Standard Equipment Announcement, Revision 1, Aug. 1, 1977.Google Scholar
  39. 39.
    NASA, Spacecraft Star Trackers, NASA SP-8026, July 1970.Google Scholar
  40. 40.
    NASA, System Design Report for International Ultraviolet Explorer (WE), GSFC, Greenbelt, MD, April 1974.Google Scholar
  41. 41.
    Nutt, W. T., M. C. Phenniger, G. M. Lerner, C. F. Manders, F. E. Baginski, M. Rubinson, and G. F. Meyers, SEASAT-A Attitude Analysis and Support Plan, NASA X-XXX-78-XXX, April 1978.Google Scholar
  42. 42.
    Pugmire, T. K., and T. J. O’Connor, “5 Pound Thrust Non-Catalytic Hydrazine Engine,” AIAA Paper No. 76–660, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.Google Scholar
  43. 43.
    Pye, J. W., “Component Development for a 10-cm Mercury Ion Thruster,” J. Spacecraft, Vol. 10, p. 106–112, 1973.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Pyle, E. J., Jr., Solar Aspect System for the Radio Astronomy Explorer, NASA X-711-68-349, Sept. 1968.Google Scholar
  45. 45.
    Quasius, G., and F. McCanless, Star Trackers and Systems Design. Wash., DC: Spartan Books, 1966.Google Scholar
  46. 46.
    RCA Service Company, OSO-I Spacecraft Subsystems Description Document, for GSFC, POB-3SCP/0175, May 1975.Google Scholar
  47. 47.
    Rose, R. E., and D. P. Hoffman, HEAO-B Attitude Control and Determination Subsystem Critical Design Review, TRW Systems Group, Redondo Beach, CA, Oct. 19, 1976.Google Scholar
  48. 48.
    Ryder, J. D., Engineering Electronics. New York: McGraw-Hill, Inc., 1967.Google Scholar
  49. 49.
    Sabnis, A. V., J. B. Dendy and F. M. Schmitt, Magnetically Suspended Large Momentum Wheels, AIAA Paper No. 74–899, AIAA Mechanics and Control of Flight Conference, Anaheim, CA, Aug. 1974.Google Scholar
  50. 50.
    Salmon, P. M. and W. C. Goss, A Microprocessor-Controlled CCD Star Tracker, AIAA Paper No. 76–1.16, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.Google Scholar
  51. 51.
    Sansevero, V. J., Jr., and R. A. Simmons, International Ultraviolet Explorer Hydrazine Auxiliary Propulsion System Supplied Under Contract NAS 5-20658, Hamilton Standard Division of United Technologies Corporation, Windsor Locks, CT, Oct. 1975.Google Scholar
  52. 52.
    Schmidtbauer, B., Hans Samuelsson, and Arne Carlsson, Satellite Attitude Control and Stabilisation Using On-Board Computers, ESRO, ESRO-CR-100, July 1973.Google Scholar
  53. 53.
    Schonstedt Instrument Company, Reston, Virginia, Private Communication, 1976.Google Scholar
  54. 54.
    Schwarz, Frank, and Thomas Falk, “High Accuracy, High Reliability Infrared Sensors for Earth, Lunar, and Planetary Use,” Navigation, Vol. 13, p. 246–259, 1966.Google Scholar
  55. 55.
    Scott, R. T., and J. E. Carroll, “Development and Test of Advanced Strap-down Components for SPARS,” Proceedings of the Symposium on Spacecraft Attitude Determination Sept. 30, Oct. 1–2, 1969, El Segundo, CA; Air Force Report No. SAMSO-TR-69–417, Vol. I; Aerospace Corp. Report No. TR-0066(5306)-12, Vol. I, 1969.Google Scholar
  56. 56.
    Slocum, R. E. and F. N. Reilly, “Low Field Helium Magnetometer,” IEEE Transactions on Nuclear Science, Vol. NS-10, p. 165–171, 1963.CrossRefGoogle Scholar
  57. 57.
    Smith, B. S., Hardware Technical Summary Fine (Digital) Sun Sensor System (FSS) (IUE), Adcole Corp., QD10153, Jan. 1975.Google Scholar
  58. 58.
    Sonett, C. P., “The Distant Geomagnetic Field II, Modulation of a Spinning Coil EMF by Magnetic Signals,” J. Geophys. Res. Vol. 68, p. 1229–1232, 1963.MATHCrossRefGoogle Scholar
  59. 59.
    Spetter, D. R., Coarse Detector Output Model, TRW Systems Group, HEAO-74–460–204, Dec. 1974.Google Scholar
  60. 60.
    Susskind, Alfred K., Notes on Analog-Digital Conversion Techniques. The Technology Press of MIT, Cambridge, MA, 1958.MATHGoogle Scholar
  61. 61.
    Thomas, J. R., Derivation and Statistical Comparison of Various Analytical Techniques Which Define the Location of Reference Horizons in the Earth’s Horizon Radiance Profile, NASA CR-726, April 1967.Google Scholar
  62. 62.
    Thomson, William Tyrrell, Introduction to Space Dynamics. New York: John Wiley & Sons, Inc., 1963.Google Scholar
  63. 63.
    Trudeau, N. R., F. W. Sarles, Jr. and B. Howland, Visible Light Sensors for Circular Near Equatorial Orbits, AIAA Paper 70–477, Third Communications Satellite Systems Conference, Los Angeles, CA, 1970.Google Scholar
  64. 64.
    Tsao, H. H., and H. B. Wollman, Photon Counting Techniques Applied to a Modular Star Tracker Design, AIAA Paper No. 76–115, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.Google Scholar
  65. 65.
    Vondra, R. J. and K. I. Thomassen, “Flight Qualified Pulsed Electric Thruster for Satellite Control,” J. Spacecraft, Vol. 11, p. 613–617, 1974.CrossRefGoogle Scholar
  66. 66.
    Werking, R. D., R. Berg, T. Hattox, G. Lerner, D. Stewart, and R. Williams, Radio Astronomy Explorer-B Post launch Attitude Operations Analysis, NASA X-581-74-227, July 1974.Google Scholar
  67. 67.
    Wertz, J. R., C. F. Gartell, K. S. Liu, and M. E. Plett, Horizon Sensor Behavior of the Atmosphere Explorer-C Spacecraft, Comp. Sc. Corp., CSC/TM-75/6004, May 1975.Google Scholar
  68. 68.
    Wetmore, R., S. Cheuvront, K. Tang, R. Bevacqua, S. Dunker, E. Thompson, C. Miller, and C. Manders, OSO-I Attitude Support System Specification and Requirements, Comp. Sc. Corp., 3000–26900–01TR, Aug. 1974.Google Scholar
  69. 69.
    Wetmore, R., J. N. Rowe, G. K. Tandon, V. H. Tate, D. L. Walter, R. S. Williams, and G. D. Repass, International Sun-Earth Explorer-B (ISEE-B) Attitude System Functional Specifications and Requirements, Comp. Sc. Corp., CSC/SD-76/6091, Sept. 1976.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • James R. Wertz
    • 1
  1. 1.Microcosm, Inc.TorranceUSA

Personalised recommendations