Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 73))

Abstract

Chapters 18 and 19 describe the various techniques used for attitude control. These techniques may be divided into two categories. Attitude stabilization, discussed in this chapter, consists of maintaining an existing orientation. Attitude maneuver control, discussed in Chapter 19, consists of reorienting the spacecraft from one attitude to another. Although this is a convenient categorization for analysis, the two areas are not totally distinct. For example, we include in attitude stabilization the process of maintaining one axis toward the Earth, which implies a continuous change in the inertial orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfriend, Kyle T., “Partially Filled Viscous Ring Nutation Damper,” J. Spacecraft, Vol. 11, p. 456–462, 1974.

    Article  Google Scholar 

  2. Alfriend, Kyle T., “Magnetic Attitude Control System for Dual-Spin Satellites,” AIAA Journal, Vol. 13, p. 817, 1975.

    Article  MATH  Google Scholar 

  3. Beach, S. W., Linear Analysis of the SEA SAT Orbital Attitude Control System, Lockheed Missiles and Space Co., Inc., GCS/3874/5211, July 30, 1976.

    Google Scholar 

  4. Bracewell, R. N., and O. K. Garriott, “Rotation of Artificial Earth Satellites,” Nature, Vol. 182, p. 760–762, Sept. 20, 1958.

    Article  Google Scholar 

  5. Carrier, G. F., and J. W. Miles, “On the Annular Damper for a Freely Precessing Gyroscope,” J. of Applied Mech., Vol. 27, p. 237–240,1960.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chetayev, N. G., The Stability of Motion. New York: Pergamon Press, 1961.

    Google Scholar 

  7. Cloutier, G. J., Variable Spin Rate, Two-Degrees-of-Freedom Nutation Damper Dynamics, Paper No. AAS 75–045 AAS/AIAA Astrodynamies Specialist Conference, Nassau, Bahamas, July 28–30, 1975.

    Google Scholar 

  8. DeBra, D. B., and R. H. Delp, “Rigid Body Attitude Stability and Natural Frequencies in a Circular Orbit,” J. of Astonautical Sci., Vol. 8, p. 14–17, 1961.

    Google Scholar 

  9. DiStefano, Joseph J. III, Allen R. Stubberud, and Ivan J. Williams, Schaum’s Outline of Theory and Problems of Feedback and Control Systems. New York: McGraw-Hill, Inc., 1967.

    Google Scholar 

  10. Dougherty, H. J., E. D. Scott, and J. J. Rodden, Analysis and Design of WHECON-An Attitude Control Concept, AIAA 2nd Communication Satellite Conference, San Francisco, CA., Apr. 1968.

    Google Scholar 

  11. Elson, Benjamin M., “Design Phase of Space Telescope Nears,” Aviation Week and Space Technology, Vol. 107, No. 6, p. 54–59, Aug. 8, 1977.

    Google Scholar 

  12. Flatley, T., Magnetic Active Nutation Damping on Explorer 45 (SSS-A), NASA X-732–72–140, GSFC, May 1972.

    Google Scholar 

  13. Glaese, J. R., H..F. Kennel, G. S. Nurre, S. M. Seltzer, and H. L. Shelton, “Low-Cost Space Telescope Pointing Control System,” J. Spacecraft, Vol. 13, p. 400–405, 1976.

    Article  Google Scholar 

  14. Greensite, Arthur L., Elements of Modern Control Theory. New York: Spartan Books, 1970.

    Google Scholar 

  15. Grell, M. G., AEM-A Attitude Control Contingency Study, Comp. Sc. Corp., CSC/TM-76/6203, Oct. 1976.

    Google Scholar 

  16. Haines, Gordon A. and Corelius T. Leondes, “Eddy Current Nutation Dampers for Dual-Spin Satellites,” J. of Astronautical Sci, Vol. 21 p. 1, 1973.

    Google Scholar 

  17. Hoffman, D. P., “HEAO Attitude Control Subsystem—A Multimode Multi-mission Design,” Proceedings AIAA Guidance and Control Conference, San Diego, CA., p. 89, Aug. 1976.

    Google Scholar 

  18. Hsu, J. C., and A. U. Meyer, Modern Control Principles and Applications, New York: McGraw-Hill, Inc., 1968.

    MATH  Google Scholar 

  19. Iwens, R. P., A. W. Fleming, and V. A. Spector, Precision Attitude Control With a Single Body-Fixed Momentum Wheel, AIAA Paper No. 74–894, Aug. 1974.

    Google Scholar 

  20. Johnson, D. A., “Effect of Nutation Dampers on the Attitude Stability of n-Body Symmetrical Spacecraft,” Gyrodynamics (P. Y. Willems, ed.). New York: Springer-Verlag, 1974.

    Google Scholar 

  21. Kaplan, Marshal H., Modern Spacecraft Dynamics and Control, New York: John Wiley & Sons, Inc., 1976.

    Google Scholar 

  22. Korn, Granino A., and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, Inc., New York, 1968.

    Google Scholar 

  23. Landon, Vernon D., and Brian Stewart, “Nutational Stability of an Axisym-metric Body Containing a Rotor,” J. Spacecraft, Vol. 1, p. 682–684, 1964.

    Article  Google Scholar 

  24. Lerner, G. M. and K. P. Coriell, Attitude Capture Procedures for GEOS-3, AIAA Paper No. 75–029, AIAA Astrodynamics Specialist Conference, Nassau, Bahamas, July 28–30, 1975.

    Google Scholar 

  25. Lerner, G. M., W. Huang, and M. D. Shuster, Analytic Investigation of the AEM-A/HCMM Attitude Control System Performance, AAS/AIAA Astrodynamics Conference, Jackson Hole, WY., Sept, 1977.

    Google Scholar 

  26. Levinson, David A., “Effects of Meteoroid Impacts on Spacecraft Attitude Motion,” J. of Aeronautical Sci., Vol. 25, p. 129–142, 1977.

    Google Scholar 

  27. Likins, Peter W., “Attitude Stability Criteria for Dual Spin Spacecraft,” J. Spacecraft, Vol. 4, p. 1638–1643, 1967.

    Article  Google Scholar 

  28. Lyons, M. G., K. L. Lebsock, and E. D. Scott, Double Gimballed Reaction Wheel Attitude Control System for High Altitude Communication Satellites, AIAA Paper No. 71–949, Aug. 1971.

    Google Scholar 

  29. Markley, F. L., Attitude Control Algorithms for the Solar Maximum Mission, AIAA Paper No. 78–1247, 1978 AIAA Guidance and Control Conference, Palo Alto, CA., 1978.

    Google Scholar 

  30. Meirovitch, L., Methods of Analytical Dynamics. New York: McGraw-Hill, Inc., 1970.

    Google Scholar 

  31. Melsa, James L. and Donald Shultz, Linear Control Systems. New York: McGraw-Hill Inc., 1969.

    Google Scholar 

  32. Mobley, F. F., and R. E. Fischell, “Orbital Results From Gravity-Gradient Stabilised Satellites,” NASA SP-107, Symposium on Passive Gravity-Gradient Stabilization, Ames Research Center, Moffett Field, CA., May 1965.

    Google Scholar 

  33. Pettus, W. W., “Performance Analyses of Two Eddy Current Damping Systems for Gravity-Gradient Stabilised Satellites,” Proceedings of the Symposium on Gravity-Gradient Attitude Stabilization, El Segundo, CA., Dec. 1968.

    Google Scholar 

  34. Pisacane, Vincent L., Peter P, Pardoe, and B. Joy Hook, “Stabilization System Analysis and Performance of the GEOS-A Gravity Gradient Satellite (EXPLORER XXIX),” J. Spacecraft, Vol. 4, p. 1623–1630, 1967.

    Article  Google Scholar 

  35. Pringle, R., Jr., “Stability of the Force Free Motions of a Dual-Spin Spacecraft,” AIAA Journal, Vol. 7, p. 1054–1063, 1969.

    Article  MATH  Google Scholar 

  36. Repass, G. D., G. M. Lerner, K. P. Coriell, and J. S. Legg, Jr., Geodynamics Experimental Ocean Satellites (GEOS-C) Prelaunch Report, NASA X-580–75–23, GSFC, Feb. 1975.

    Google Scholar 

  37. Roberson, R. E., and J. V. Breakwell, “Satellite Vehicle Structure,” United States Patent 3,031,154, April 24, 1962 (filed September 20, 1956).

    Google Scholar 

  38. Stickler, A. Craig, and K. T. Alfriend, “Elementary Magnetic Attitude Control System,” J. Spacecraft, Vol. 13, p. 282–287, May 1976.

    Article  Google Scholar 

  39. Weiss, R., R. L. Bernstein, Sr., and A. J. Besonis, Scan-By-Nutation, A New Spacecraft Concept, AIAA Paper No. 74–896, Aug. 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Wertz, J.R. (1978). Attitude Stabilization. In: Wertz, J.R. (eds) Spacecraft Attitude Determination and Control. Astrophysics and Space Science Library, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9907-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9907-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-1204-2

  • Online ISBN: 978-94-009-9907-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics