Calculation of Vibrational Wavefunctions and Energies Using MRD-CI Techniques

  • Robert J. Buenker
  • Sigrid D. Peyerimhoff
  • Miljenko Perić
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)


The calculation of electronic wavefunctions is an important objective in quantum chemistry but it is evident that if even this could be accomplished without any approximation it would still not be sufficient to explain many types of molecular structure phenomena observed experimentally. In the spectra of molecular systems, for example, the intensity associated with a given electronic transition is often spread over a wide range of wavelength and in this instance the most that one can hope to obtain from a calculation of the electronic energy for the participating states at a single geometry is the approximate location of an absorption (or emission) maximum found therein. To go beyond the simple calculation of vertical spectra it is clearly necessary to introduce at least vibrational motion into the theoretical treatment and this objective is most easily accomplished using the Born-Oppenheimer Method [1], or, as it is more commonly referred to among spectroscopists, the Franck-Condon Approximation [1].


Band System Potential Curf Electron Detachment Electronic Wavefunctions Vibrational Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and E. Oppenheimer, Ann. Phys. 84, 457 (1927)CrossRefGoogle Scholar
  2. 2.
    G. Herzberg, “Spectra of Diatomic Molecules”, D. van Nostrand Co., New York (1950)Google Scholar
  3. 3.
    S.D. Peyerimhoff and R.J. Buenker, Theor. Chim. Acta 27, 243 (1972)CrossRefGoogle Scholar
  4. 4.
    M. Perić, Mol. Phys. 34, 1675 (1977)CrossRefGoogle Scholar
  5. 5.
    R.J. Buenker, S.D. Peyerimhoff and M. Perić, Chem. Phys. Letters 42, 383 (1976)CrossRefGoogle Scholar
  6. 6.
    R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letters 34, 225 (1975)CrossRefGoogle Scholar
  7. 7.
    M. Yoshimine, K. Tanaka, H. Tatawaki, S. Ohara, F. Sasaki and K. Ohno, J. Chem. Phys. 64, 2254 (1976)CrossRefGoogle Scholar
  8. 8.
    R.H. Huebner, R.J. Celotta, S.R. Mielczarek and C.E. Kuyatt, J. Chem. Phys. 63, 241 (1975)CrossRefGoogle Scholar
  9. 9.
    K.H. Becker, M.A. Inocencio and U. Schurath, Int. J. Chem. Kinetics 51, 205 (1975); K.H. Becker, U. Schurath and M. Weber, J. Chem. Phys. in press; M. Weber, Ph. D. thesis Bonn (1976)Google Scholar
  10. 10.
    A.B. Sannigrahi, K.H. Thunemann, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. 20, 25 (1977)CrossRefGoogle Scholar
  11. 11.
    A.B. Sannigrahi, S.D. Peyerimhoff and R.J. Buenker Chem. Phys. 20, 381 (1977)CrossRefGoogle Scholar
  12. 12.
    J.F. Harrison, Accounts Chem. Res. 7, 378 (1974)CrossRefGoogle Scholar
  13. 13.
    P.F. Zittel, G.B. Ellison, S.V. O’Neil, E. Herbst, W.C. Lineberger and W.P. Reinhardt, J. Am. Chem. Soc. 98, 3731 (1976)CrossRefGoogle Scholar
  14. 14.
    L.B. Harding and W.A. Goddard III, Chem. Phys. Letters 55, 217 (1978)CrossRefGoogle Scholar
  15. 14a.
    L.B. Harding and W.A. Goddard III, J. Chem. Phys. 67, 1777 (1977)CrossRefGoogle Scholar
  16. 15.
    S.K. Shih, S.D. Peyerimhoff, R.J. Buenker and M. Perić, Chem. Phys. Letters 55, 206 (1978)CrossRefGoogle Scholar
  17. 16.
    J. Darion, S.V. Filseth, D. Feldmann, H. Zacharias, C.H. Dugan and K.H. Welge, Chem. Phys. 29, 345 (1978)CrossRefGoogle Scholar
  18. 17.
    G. Herzberg and K.K. Innes, Can. J. Phys. 35, 842 (1957)CrossRefGoogle Scholar
  19. 18.
    G.M. Schwenzer, S.V. O’Neil and H.F. Schaefer III, J. Chem. Phys. 60, 2787 (1974)CrossRefGoogle Scholar
  20. 19.
    M. Perić, S.D. Peyerimhoff and R.J. Buenker, Can. J. Chem. 55, 3664 (1977)CrossRefGoogle Scholar
  21. 20.
    L. Åsbrink, C. Fridh and E. Lindholm, in pressGoogle Scholar
  22. 21.
    K. Vasudevan, S.D. Peyerimhoff, R.J. Buenker, W.E. Kammer and H. Hsu, Chemo Phys. 7, 187 (1975)CrossRefGoogle Scholar
  23. 22.
    R.A. Back, C. Willis and D.A. Ramsay, Can. J. Chem. 52, 1006 (1974)CrossRefGoogle Scholar
  24. 23.
    M. Perić, R.J. Buenker and S.D. Peyerimhoff, Can. J. Chem. 55, 1533 (1977)CrossRefGoogle Scholar
  25. 24.
    R.A. Back, C. Willis and D.A. Ramsay, preprint communicated prior to publicationGoogle Scholar
  26. 25.
    A. Richartz, R.J. Buenker, P.J. Bruna, S.D. Peyerimhoff, Mol. Phys. 33, 1345 (1977)CrossRefGoogle Scholar
  27. 26.
    R.J. Buenker and S.D. Peyerimhoff, Chem. Rev. 74, 127 (1974)CrossRefGoogle Scholar
  28. 27.
    O.W. Turner, C. Baker and C.R. Brundle, “Molecular Photoelectron Spectroscopy”, Interscience New York (1970)Google Scholar
  29. 28.
    C. Sandorfy, “Chemical Spectroscopy and Photochemistry in the Ultraviolet”. Reidel Publishing Co., Dordrecht, Holland (1974)Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • Robert J. Buenker
    • 1
  • Sigrid D. Peyerimhoff
    • 2
  • Miljenko Perić
    • 2
  1. 1.Lehrstuhl für Theoretische ChemieGesamthochschule Wuppertal56 Wuppertal 1W. Germany
  2. 2.Lehrstuhl für Theoretische ChemieUniversität Bonn53 BonnW. Germany

Personalised recommendations