Advertisement

Accuracy, Timing and General Applicability of the MRD-CI Method

  • Robert J. Buenker
  • Sigrid D. Peyerimhoff
Chapter
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)

Abstract

The configuration interaction method is generally acknowledged to be a quite useful means of obtaining correlated wavefunctions and energies for the electronic states of atoms and molecules. The theory behind this approach is very straightforward but in applying it to practical problems of chemical interest certain computational problems arise, particularly if it is desired to extend the calculations to the limit of a full CI in a large AO basis. In essence all the CI method involves is the formation of a matrix representation of the non-relativistic electronic Hamiltonian (within the framework of the Born-Oppenheimer Approximation [1]), followed by solution of the associated secular equation (diagonalization).

Keywords

Secular Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and E. Oppenheimer, Ann. Phys. 84,457 (1927)CrossRefGoogle Scholar
  2. 2.
    R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974)CrossRefGoogle Scholar
  3. 3.
    R.J. Buenker and S.D. Peyerimhoff, Theor. Chim. Acta 39, 217 (1975)CrossRefGoogle Scholar
  4. 4.
    R.J. Buenker, S.D. Peyerimhoff and W. Butscher, Mol. Phys. 35, 771 (1978)CrossRefGoogle Scholar
  5. 5.
    M. Tinkham, “Group Theory and Quantum Mechanics”, McGraw-Hill Book Co., Inc., New York (1964)Google Scholar
  6. 6.
    I. Shavitt, C.F. Bender, A. Pipano and R.P. Hosteny, J. Comput. Phys. 11, 90 (1973)CrossRefGoogle Scholar
  7. 7.
    E.R. Davidson, J. Comput. Phys. 17, 87 (1975)CrossRefGoogle Scholar
  8. 8.
    W. Butscher and W.E. Kammer, J. Comput. Phys. 20, 313 (1976)CrossRefGoogle Scholar
  9. 9.
    H.F. Schaefer III, J. Chem. Phys. 54, 2207 (1971)CrossRefGoogle Scholar
  10. 10.
    L.B. Harding and W.A. Goddard III, J. Chem. Phys. 67, 1777 (1977)CrossRefGoogle Scholar
  11. 11.
    Z. Gershgorn. I. Shavitt, Int. J. Quantum Chem. 2, 751 (1968)CrossRefGoogle Scholar
  12. 12.
    J.L. Whitten and M. Hackmeyer, J. Chem. Phys. 51, 5584 (1969)CrossRefGoogle Scholar
  13. 13.
    R.J. Buenker and S.D. Peyerimhoff, Chem.Phys. Letters 29, 253 (1974)CrossRefGoogle Scholar
  14. 14.
    C.F. Bender and E.R. Davidson, J. Phys. Chem. 70, 2675 (1966)CrossRefGoogle Scholar
  15. 15.
    K.H. Thunemann, J. Römelt, S.D. Peyerimhoff and R.J. Buenker, Intern. J. Quantum Chem. 11, 743 (1977)CrossRefGoogle Scholar
  16. 16.
    S.K. Shih, W. Butscher, R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. 29, 241 (1978)CrossRefGoogle Scholar
  17. 17.
    J.G. Maas, N.P.F.B. van Asselt, P.J.C.M. Nowak, J. Los, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. 17, 215 (1976)CrossRefGoogle Scholar
  18. 18.
    R. Römelt, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. in pressGoogle Scholar
  19. 19.
    W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356 (1975)CrossRefGoogle Scholar
  20. 20.
    R. Ahlrichs, H. Lischka, B. Zurawski and W. Kutzelnigg, J. Chem. Phys. 63, 4685 (1975)CrossRefGoogle Scholar
  21. 21.
    W. Butscher, S.K. Shih, R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. 52, 457 (1977)Google Scholar
  22. 22.
    K.H. Thunemann, S.D. Peyerimhoff and R.J. Buenker, J. Mol. Spectry (1978)Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • Robert J. Buenker
    • 1
  • Sigrid D. Peyerimhoff
    • 2
  1. 1.Lehrstuhl für Theoretische ChemieGesamthochschule Wuppertal56 Wuppertal 1W. Germany
  2. 2.Lehrstuhl für Theoretische ChemieUniversität Bonn53 BonnW. Germany

Personalised recommendations