Advertisement

Excitation Energies and Transition Moments from the Polarization Propagator

  • Jan Linderberg
Chapter
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)

Abstract

These lectures will be concerned with the principles behind an algebraic, equation of motion approach to the determination of the polarization propagator. This term is here taken in a general sense to encompass a set of two-time Green’s functions, such as used by Yngve Öhrn and the present author in our textbook [1], There will not be time to present the arguments leading to the appearance of the polarization propagator as the natural quantity for the examination of transition moments and excitation energies, and the concerned reader may find a detailed approach in terms of photon scattering in Chapter 12 of Reference [1].

Keywords

Excitation Energy Random Phase Approximation Transition Moment Spectral Density Function Propagator Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry (Academic Press, London 1973).Google Scholar
  2. 2.
    J. Linderberg and Y. Öhm, Int.J.Quant.Chem. 12, 161 (1977).CrossRefGoogle Scholar
  3. 3.
    Y. Öhm and J. Linderberg, Int.J.Quant.Chem. (to be published).Google Scholar
  4. 4.
    P. Jørgensen, Ann. Rev. Phys.Chern. 26, 359 (1975), J. Oddershede, Adv.Quant.Chem. (to be published).CrossRefGoogle Scholar
  5. 5.
    D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau/Plenum Press, New York 1974) p. 154.Google Scholar
  6. 6.
    P.O. Löwdin, Rev.Mod.Phys. 39, 259 (1967).CrossRefGoogle Scholar
  7. 7.
    E. Dalgaard, J.Phys.B:Atom.Molec.Phys. 8, 695 (1975).CrossRefGoogle Scholar
  8. 8.
    N. Elander, J. Oddershede, and N.H.F. Beebe, Astrophys.J. 216, 165 (1977).CrossRefGoogle Scholar
  9. 9.
    O. Goscinski, Int.J. Quant.Chem. 2, 761 (1968).CrossRefGoogle Scholar
  10. 10.
    J. Oddershede, P. Jørgensen, and N.H.F. Beebe, J.Chem.Phys. 63, 2996 (1975).CrossRefGoogle Scholar
  11. 11.
    P. Jørgensen, J. Oddershede, P. Albertsen, and N.H.F. Beebe, J.Chem.Phys. (to be published 1978).Google Scholar
  12. 12.
    D.J. Thouless, Nucl.Phys. 21, 225 (1960)CrossRefGoogle Scholar
  13. 12a.
    J. Paldus and J. Cisek, Phys.Rev. A2, 2268 (1970).Google Scholar
  14. 13.
    J. Oddershede, P. Jørgensen, and N.H.F. Beebe, Chem.Phys. 25, 451 (1977).CrossRefGoogle Scholar
  15. 14.
    M. Yoshimine, IBM Res.Rep. RJ555 (1969).Google Scholar
  16. 15.
    N.H.F. Beebe and J. Linderberg, Int.J.Quant.Chem. 12, 683 (1977).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • Jan Linderberg
    • 1
  1. 1.Department of ChemistryAarhus UniversityAarhusDenmark

Personalised recommendations