Excited States of Transition Metal Oxides

  • A. Barry Kunz
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)


A discussion of the electronic structure of the non-metallic transition metal oxides is presented. To be successful any model must quantitatively, at least, describe the following phenomena: insulating behavior of open shell systems; magnetic properties and low lying magnetic excitations; cohesion and phonon spectroscopy; “localized” excitations or excitons and; Bloch like excitations. We argue that the least sophisticated model which can attempt such a description is the Unrestricted Hartree-Fock model (UHF), and even in this limit Koopman’s theorem may not be assumed but rather total energy differences of several self-consistent solutions are needed. We further show that if quantitative accuracy is needed correlation corrections beyond the UHF limit are necessary. We discuss several simple models for inclusion of correlation corrections using techniques of classical electrodynamics on one hand and of Configuration Interaction on the other hand. Detailed calculations are presented using these models and comparisons with optical spectroscopy are made. There is a reasonable comparison of theory and experiment produced by these methods, and the ground state of FeO, CoO and NiO is seen to be insulating whereas that of TiO and VO is seen to be metallic.


Hubbard Model Transition Metal Oxide Mott Insulator Correlation Correction Wannier Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, D. (1968) Solid St. Phys. 21, 1CrossRefGoogle Scholar
  2. Adler, D. and Feinleib J. (1970) Phys. Rev. B 2, 3112.CrossRefGoogle Scholar
  3. Brandow, B. (1976) Int. J. Quant. Chem. Symp. 10, 417.CrossRefGoogle Scholar
  4. Brandow, B. (1977) Adv. in Phys. 26, 651.CrossRefGoogle Scholar
  5. Brown, F. C., Gahwiller, C. and Kunz, A. B. (1971) Sol. St. Comm. 9, 487.CrossRefGoogle Scholar
  6. Collins, T. C., Kunz, A. B. and Deutsch, P. W. (1974) Phys. Rev. A 10, 1034.CrossRefGoogle Scholar
  7. Collins, T. C., Kunz, A. B. and Ivey, J. (1975) Int. J. Quant. Chem. Symp. 9, 519.CrossRefGoogle Scholar
  8. Eastman, D. E. and Freeouf, J. L. (1975) Phys Rev. Lett. 34, 395.CrossRefGoogle Scholar
  9. Hubbard, J. (1963) Proc. R. Soc. A 276, 238.CrossRefGoogle Scholar
  10. Hubbard, J. (1964) Proc. R. Soc. A 277, 237.CrossRefGoogle Scholar
  11. Hubbard, J. (1965) Proc. R. Soc. A 285, 542.CrossRefGoogle Scholar
  12. Hubbard, J. (1966) Proc. R. Soc. A 296, 82.CrossRefGoogle Scholar
  13. Kunz, A. B. (1972) Phys. Rev. B 6, 606.CrossRefGoogle Scholar
  14. Kunz, A. B. and Surratt, G. T. (1978) Sol. St. Comm. 25, 9.CrossRefGoogle Scholar
  15. Löwdin, P. O. (1966) Quantum Theory of Atom Molecules and the Solid State, P. O. Löwdin, Editor, 601.Google Scholar
  16. Mattheiss, L. F. (1972) Phys. Rev. B 5, 290.CrossRefGoogle Scholar
  17. Mickish, D. J., Kunz, A. B. and Collins, T. C. (1975) Phys. Rev. B 9, 4461.CrossRefGoogle Scholar
  18. Mott, N. F. (1949) Proc. Phys. Soc. A 62, 416.CrossRefGoogle Scholar
  19. Mott, N. F. (1952) Prog. Metal Phys. 3, 76.CrossRefGoogle Scholar
  20. Mott, N. F. (1956) Can. J. Phys. 34, 1356.CrossRefGoogle Scholar
  21. Mott, N. F. (1958) Supplto. Nuovi. Ani. 7, 312.Google Scholar
  22. Mott, N. F. (1961) Phil. Mag. 6, 281.CrossRefGoogle Scholar
  23. Mott, N. F. (1969) Phil. Mag. 20, 1.CrossRefGoogle Scholar
  24. Overhauser, A. W. (1971) Phys. Rev. B 3, 1888.CrossRefGoogle Scholar
  25. Powell, R. J. and Spicer, W. E. (1970) Phys. Rev. B 2, 2182.CrossRefGoogle Scholar
  26. Seitz, F. (1940), Modern Theory of Solids.Google Scholar
  27. Wilson, T. M. (1968) Int. J. Quant. Chem. Symp. 2, 269.CrossRefGoogle Scholar
  28. Wilson, T. M. (1970) Int. J. Quant. Chem. Symp. 3, 757.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • A. Barry Kunz
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations