Aspects of the Theory of Disordered Systems

  • E. N. Economou
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)


Questions related to the structural instabilities and the disorder of non periodic solids are briefly reviewed. Disorder may cause localization of the one particle eigenstates thus affecting seriously the transport properties of the materials. The metastability of the amorphous state is revealed physically through a linear (in T) contribution to the specific heat in the limit T → 0.


Amorphous State Chalcogenide Glass Amorphous Semiconductor Mobility Edge Kondo Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Adler, Scientific American, 236, 5, 36 (1977).CrossRefGoogle Scholar
  2. 2.
    N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, England (1971).Google Scholar
  3. 3.
    J. Tauc, editor, Amorphous and Liquid Semiconductors, Plenum Press (1974).Google Scholar
  4. 4.
    P.G. LeComber and J. Mort, editors, Electronic and Structural Properties of Amorphous Semiconductors, Academic Press (1973).Google Scholar
  5. 5.
    J. Stuke and W. Brenig, editors, Amorphous and Liquid Semiconductors, Taylor and Francis, London (1974).Google Scholar
  6. 6.
    See, e.g. R.J. Elliot, J.A. Krumhansl and P.L Leath, Rev. Mod. Phys. 46, 465 (1974); J. Ladik in this volume.CrossRefGoogle Scholar
  7. 7.
    N.F. Mott, Phil. Mag. 19, 835 (1969)CrossRefGoogle Scholar
  8. 7a.
    V. Ambegaokar, B.I. Halperin, and J.S. Langer, Phys. Rev. B4, 2612 (1971).Google Scholar
  9. 8.
    N.F. Mott, Phil. Mag. 26, 1015 (1972).CrossRefGoogle Scholar
  10. 9.
    D.C.. Licciardello and D.J. Thouless, Phys. Rev. Lett. 35, 1475 (1975).CrossRefGoogle Scholar
  11. 10.
    D.C. Licciardello and D.J. Thoreless, Surf. Science 58, 89 (1976); D.C. Licciardello, to be published.CrossRefGoogle Scholar
  12. 11.
    See, e.g. V.K.S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325 (1971).CrossRefGoogle Scholar
  13. 12.
    See, e.g. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
  14. 13.
    Consider the ocean replaced by a membrane attached to its shores; a quantum particle propagating in the ocean will then be equivalent to an elastic wave propagating in this membrane. Tunneling can be included in this picture by allowing the boundaries (shores) to move so that the wave can be transfered (with attenuation) over the land area to nearby lakes.Google Scholar
  15. 14.
    In first order perturbation theory the transfer from i to j depends on the ration tij/(ωij).Google Scholar
  16. 15.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefGoogle Scholar
  17. 16.
    D.J. Thouless, Phys. Rep. 13C, 94 (1974).Google Scholar
  18. 17.
    E.N. Economou, Green’s Functions in Quantum Physics, to be published by Springer Verlag.Google Scholar
  19. 18.
    See, e.g. C. Papatriantafillou, E.N. Economou, T.P. Eggarder, Phys. Rev. B13, 910 (1976)Google Scholar
  20. 18a.
    C. Papatriantafillou and E.N. Economou, Phys. Rev. B13, 920 (1976) and references therein.Google Scholar
  21. 19.
    J.T. Edwards and D.J. Thouless, J. Phys. C5, 807 (1972).Google Scholar
  22. 20.
    K. Schönhammer and W. Brenig, Phys. Lett. A 42, 447 (1973).CrossRefGoogle Scholar
  23. 21.
    D. Weaire and A.R. Williams, J. Phys. C8, 1239 (1977)Google Scholar
  24. 21a.
    D. Weaire and V. Srivastawa, J. Phys. C10, 4309 (1977).Google Scholar
  25. 22.
    N.F. Mott, Electr. Power 19, 321 (1973)CrossRefGoogle Scholar
  26. 22a.
    F. Stern, Phys. Rev. B9, 2762 (1974).Google Scholar
  27. 23.
    D.C. Tsui and S.J. Allen Jr., Phys. Rev. Lett. 34, 1293 (1975)CrossRefGoogle Scholar
  28. 23a.
    N.F. Mott, M. Pepper, S. Pollitt, R.H. Wallis and C.J. Adkins, Proc. Roy. Soc. A345, 169 (1975).Google Scholar
  29. 24.
    J. Michl, this volume.Google Scholar
  30. 25.
    R.C. Zeller and R.O. Pohl, Phys. Rev. B4, 2029 (1971).Google Scholar
  31. 26.
    P.W. Anderson, B.J. Halperin and C.M. Varma, Phil. Mag. 25, 1 (1972).CrossRefGoogle Scholar
  32. 27.
    W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972).CrossRefGoogle Scholar
  33. 28.
    R.W. Cochrance, R. Harris, J.O. Ström-Olson and M.J. Zuckerman, Phys. Rev. Lett. 35, 676 (1975).CrossRefGoogle Scholar
  34. 29.
    P.W. Anderson, Phys. Rev. Lett. 34, 953 (1975).CrossRefGoogle Scholar
  35. 30.
    N.F. Mott, E.A. Davis and R.A. Street, Phil. Mag. 32, 961 (1975).CrossRefGoogle Scholar
  36. 31.
    M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).CrossRefGoogle Scholar
  37. 32.
    E.N. Economou, K.L. Ngai, and T.L. Reinecke, Phys. Rev. Lett. 39, 157 (1977); K.L. Ngai, T.L. Reinecke, and E.N. Economou, to be published in Phys. Rev.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • E. N. Economou
    • 1
  1. 1.Department of PhysicsN. R. C. Demokritos Aghia Paraskevi, AthensGreece

Personalised recommendations