Use of CI Methods for the Study of Molecular Dissociation Processes in Various Electronic States

  • Sigrid D. Peyerimhoff
  • Robert J. Buenker
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 46)


The adequate description of bond-breaking processes is a difficult problem since it requires very good correlated wavefunctions to account for the generally quite large difference in correlation energy between the combined system and the individual fragments. The situation is especially critical if multiple bonds are broken as in N2, for example, for which the single-configuration Hartree-Fock treatment yields only a dissociation energy of De= 5.18 eV [1], i.e 4.72 eV below the experimental result [2]. But even in systems containing only a single bond such as F2 the use of correlated wavefunctions is essential since it is well-known that this molecule is not even found to be bound with respect to two F atoms in the Hartree-Fock approximation. And finally it is also obvious that extremely weak bonds like van der Waals interactions can only be described by methods going beyond the single-configuration approach.


Potential Energy Surface Dissociation Energy Dissociation Limit Calculated Potential Energy Dissociation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.E. Cade, K.D. Sales and A.C. Wahl, J. Chem. Phys. 44, 1973 (1966)CrossRefGoogle Scholar
  2. 2.
    F.R. Gilmore, J. Quant. Radiat. Transfer 5, 369 (1965)CrossRefGoogle Scholar
  3. 3.
    J.G. Maas, N.P.F. B. van Asselt, P.J.C.M. Nowak, J. Los, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. 17, 217 (1976)CrossRefGoogle Scholar
  4. 4.
    P. Harihan and W. Kutzelnigg, preprint communicated to the authors; A.W. Raczkowski and W. A. Lester, Jr., Chem. Phys. Letters 47, 45 (1977)CrossRefGoogle Scholar
  5. 4a.
    J.W. Riehl, C.J. Fisher, J.D. Baloga and J.L. Kinsey, J. Chem. Phys. 58, 4571 (1973)CrossRefGoogle Scholar
  6. 5.
    J. Römelt, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys, in pressGoogle Scholar
  7. 6.
    J. Römelt, Ph. D. thesis, Bonn (1977)Google Scholar
  8. 7.
    R.J. Buenker, S.D. Peyerimhoff and M. Perić, Chem. Phys. Letters 42, 383 (1976)CrossRefGoogle Scholar
  9. 8.
    W. Butscher, S.K. Shih, R.J. Buenker and S.D. Peyerimhoff, Chenu Phys. Letters 52, 457 (1977)CrossRefGoogle Scholar
  10. 9.
    S.D. Peyerimhoff and R.J. Buenker, in “The New World of Quantum Chemistry”, eds. B. Pullmann and R. Parr, D. Reidel Publ. Co., Dordrecht, Holland (1976)Google Scholar
  11. 10.
    P.J. Bruna, R.J. Buenker and S.D. Peyerimhoff, J. Mol. Structure 32, 217 (1976)CrossRefGoogle Scholar
  12. 11.
    C.F. Bender, S.V. O’Neil, P.K. Pearson and H. F. Schaefer, Science 176, 1412 (1972).CrossRefGoogle Scholar
  13. 11a.
    See also H.F. Schaefer “The Electronic Structure of Atoms and Molecules”, Addison-Wesley, Reading, Mass. (1972)Google Scholar
  14. 12.
    G. Hirsch, P.J. Bruna, S.D. Peyerimhoff and R.J. Buenker, Chem. Phys. Letters 52, 442 (1977)CrossRefGoogle Scholar
  15. 13.
    See for example, M.B. Robin in “Higher Excited States of Polyatomic Molecules”, Academic Press, New York/London (1974), Vol. 1;Google Scholar
  16. 13a.
    K.H. Becker and K.H. Welge, Z. Naturforsch. A 17, 676 (1962)Google Scholar
  17. 13b.
    K.H. Becker and K.H. Welge, Z. Naturforsch. A 18, 600 (1963)Google Scholar
  18. 13c.
    H. Okabe and M. Lenzi, J. Chem. Phys. 47, 5241 (1967)CrossRefGoogle Scholar
  19. 13d.
    J. Masanet, A. Gilles and C. Vermeil, J. Photochem. 3, 417 (1974/75).Google Scholar
  20. 14.
    R. Runau, S.D. Peyerimhoff and R.J. Buenker, J. Mol. Spectry. 68, 253 (1977).CrossRefGoogle Scholar
  21. 15.
    W.R. Harshberger, J. Chem. Phys. 54, 2504 (1971)CrossRefGoogle Scholar
  22. 16.
    A.B.F. Duncan, Phys. Rev. 47, 822 (1935)CrossRefGoogle Scholar
  23. 16a.
    A.B.F. Duncan, Phys. Rev. 50, 700 (1936)CrossRefGoogle Scholar
  24. 17.
    A.E. Douglas and J.M. Hollas, Canad. J. Phys. 39, 479 (1961)CrossRefGoogle Scholar
  25. 18.
    R.S. Mulliken, Int. J. Quantum Chem. 5S, 83 (1971)Google Scholar
  26. 19.
    R.J. Buenker and S.D. Peyerimhoff, Chem. Phys. Letters 36, 415 (1975)CrossRefGoogle Scholar
  27. 20.
    Results of this laboratoryGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • Sigrid D. Peyerimhoff
    • 1
  • Robert J. Buenker
    • 2
  1. 1.Lehrstuhl für Theoretische ChemieUniversität Bonn53 BonnW.Germany
  2. 2.Lehrstuhl für Theoretische ChemieGesamthochschule Wuppertal56 Wuppertal 1W. Germany

Personalised recommendations