Skip to main content

Theory of Atomic and Molecular Non-Stationary States Within the Coordinate Rotation Method

  • Chapter
Excited States in Quantum Chemistry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 46))

Abstract

The recently developed dilation (coordinate rotation) theory of the Coulomb Hamiltonian allows the calculation of energies and widths of nonstationary atomic and molecular states using square-integrable basis sets only. In the pioneering applications of this theory to two electron atomic autoionizing states, it was found necessary to employ large basis sets in brute force CI calculations, an expensive approach which has significant limitations when it comes to larger systems. In this paper we present a many-body theory of autoionizing and autodissociating states which implements the dilatation theory in an efficient and consistent way. In the case of autodissociating states it is not required to invoke the Born-Oppenheimer approximation. The present approach first isolates in the ϑ-plane (ϑ is the rotation angle) the “localized” correlation effects from the “asymptotic” ones by rotating the coordinates of the localized function, ψ0, which, in the time dependent theory, represents the initially localized state before it decays. The coordinate rotation leaves the real energy of ψ0 invariant and allows the inclusion of “asymptotic” correlation vectors, in terms of “Gamow orbitals”, which perturb ψ0 and E0 and yield the decay energy shift and width. Our theory is supported by numerical examples on H and He.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.L. Altick, in this volume.

    Google Scholar 

  2. CA. Nicolaides, Phys. Rev. A6, 2078 (1972)

    Google Scholar 

  3. CA. Nicolaides, Nucl. Inst. Methods 110, 231, (1973).

    Article  CAS  Google Scholar 

  4. CA. Nicolaides and D.R. Beck, “Time Dependence, Complex Scaling and the Calculation of Resonances in Many-Electron Systems”, to be published in Int. J. Qu. Chem. 14 (1978).

    Google Scholar 

  5. G.D. Doolen, J. Phys. B8, 525 (1975).

    Google Scholar 

  6. G.D. Doolen, J. Nuttall and R.W. Stagat, Phys. Rev. A10, 1612, (1974).

    Google Scholar 

  7. W.P. Reinhardt, Int. J. Qu. Chem. S10, 359, (1976).

    Google Scholar 

  8. P. Winkler, Z. Physik A283, 149, (1977)

    Google Scholar 

  9. P. Winkler and R. Yaris, J. Phys. B11, 1481, (1978).

    Google Scholar 

  10. J. Aquilar and J.M. Combes, Comm. Math. Phys. 22, 69, (1971).

    Google Scholar 

  11. E. Balslev and J.M. Combes, Comm. Math. Phys. 22, 280, (1971).

    Article  Google Scholar 

  12. B. Simon, Comm. Math. Phys. 27, 1, (1972)

    Article  Google Scholar 

  13. B. Simon, Ann. Math. 97, 247, (1973).

    Article  Google Scholar 

  14. Y.K. Ho, A.K. Bhatia and A. Temkin, Phys. Rev. A15, 1423, (1977).

    Google Scholar 

  15. D.R. Beck and C.A. Nicolaides, Phys. Rev. Letts, submitted May 1978; paper 13, 9th EGAS Conference, Krakow, Poland, July 1977.

    Google Scholar 

  16. We bring to attention the recent excellent work of D.M. Bishop and coworkers, D.M. Bishop, Phys. Rev. Letts. 37, 484, (1976)

    Article  CAS  Google Scholar 

  17. D.M. Bishop and L.M. Cheung, Phys. Rev. A16, 640, (1977), where accurate calculations of the ground state of H2 are performed without invoking the B-O approximation. Of course, there is considerable difference between ground state and autodissociating state calculations, including the type of variational procedures which are applicable.

    Google Scholar 

  18. G. Gamow, Z. Phys. 51, 204, (1928).

    Article  CAS  Google Scholar 

  19. A.F.J. Siegert, Phys. Rev. 56, 750, (1939).

    Article  CAS  Google Scholar 

  20. J.N. Bardsley, A. Herzenberg and F. Mandl, Proc. Phys. Soc. 89, 305, (1966).

    Article  CAS  Google Scholar 

  21. Ya. B. Zel’dovich, JETP (Sov. Phys.) 12, 542, (1961).

    Google Scholar 

  22. T. Berggren, Nucl. Phys. A109, 265, (1968).

    Google Scholar 

  23. Gy. I. Szasz, Phys. Letts. 55A, 327, (1976).

    Article  Google Scholar 

  24. CA. Nicolaides and D.R. Beck, Phys. Letts. 65A, 11, (1978).

    Article  Google Scholar 

  25. J. Nuttall, Bull. Am. Phys. Soc. 17, 598, (1972).

    Google Scholar 

  26. J.N. Bardsley and B.R. Junker, J. Phys. B5, 2178, (1972).

    Google Scholar 

  27. A.B. Migdal and V.P. Krainov, “Approximation Methods in Quantum Mechanics”, Chapter 2, Benjamin Press (1969).

    Google Scholar 

  28. C.A. Nicolaides and D.R. Beck, Phys. Rev. Letts. 38, 683 (1977)

    Article  CAS  Google Scholar 

  29. C.A. Nicolaides and D.R. Beck, Phys. Rev. Letts. 38 1037, (1977).

    Article  Google Scholar 

  30. Solutions of this type for molecules have not been used before. We do not know whether they exist. We see little difference between them and an in principle numerical integration of the resulting H-F integro-differential equations occuring in nuclei where both protons and neutrons are treated simultaneously. Within the Born-Oppenheimer approximation, ΦHF (r,R) ΦHF (r;R), i.e. one obtains the diabatic states discussed by T.F. O’Malley, Adv. At. Mol. Phys. 7, 223, (1971)

    Article  Google Scholar 

  31. and W.L. Lichten, Phys. Rev. 139, 27, (1965). This approximation essentially omits the nuclear coupling term, ∂/∂R, which then must be included perturbâtively at this stage and not after electron and nuclear correlation is taken into account.

    Article  CAS  Google Scholar 

  32. D.R. Beck and C.A. Nicolaides, this volume.

    Google Scholar 

  33. C.A. Nicolaides and D.R. Beck, Chem. Phys. Letts. 36, 79, (1975).

    Article  CAS  Google Scholar 

  34. C.A. Nicolaides and D.R. Beck, this volume.

    Google Scholar 

  35. C.A. Nicolaides and D.R. Beck, J. Chem. Phys. 66, 1982, (1977).

    Article  CAS  Google Scholar 

  36. E. Brandas and P. Froelich, Phys. Rev. A16, 2207, (1977).

    Google Scholar 

  37. R. Yaris and P. Winkler, J. Phys. B11, 1475, (1978).

    Google Scholar 

  38. C.A. Nicolaides and D.R. Beck, Phys. Letts. 60A, 92, (1977).

    Article  Google Scholar 

  39. A.K. Bhatia and A. Temkin, Phys. Rev. A11, 2018, (1975).

    Google Scholar 

  40. P.K. Mukherjee, S. Sengupta and A. Mukherji, Int. J. Qu. Chem. 4, 139, (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Nicolaides, C.A., Beck, D.R. (1978). Theory of Atomic and Molecular Non-Stationary States Within the Coordinate Rotation Method. In: Nicolaides, C.A., Beck, D.R. (eds) Excited States in Quantum Chemistry. NATO Advanced Study Institutes Series, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9902-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9902-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9904-6

  • Online ISBN: 978-94-009-9902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics