Excited States in Quantum Chemistry pp 317-328 | Cite as
The Calculation of Atomic and Molecular Electron Binding Energies
Chapter
- 1 Citations
- 156 Downloads
Abstract
Interest in accurate theoretical determination of electron binding energies has grown with the experimental advances in the field of photoelectron spectrometry. Much early work [1] on ionization potentials, photoionization cross sections, chemical shifts etc. relied on semiempirical models. It was also recognized early [2] that ground state Hartree-Fock ab-initio orbital energies (according to Koopmans’ theorem) can with some success be used as measures of valence electron binding energies, while core ionization energies are rather poorly represented in this manner.
Keywords
Photoionization Cross Section Electron Binding Energy Valence Region Electron Propagator Vertical Electron Affinity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, (North-Holland Publishing Co., Amsterdam, 1969).Google Scholar
- [2]T. A. Koopmans, Physica (The Hague) 1, 104 (1933).CrossRefGoogle Scholar
- [3]B. T. Pickup, and O. Gpscinski, Mol. Phys. 26, 1013 (1973).CrossRefGoogle Scholar
- [4]J. Linderberg, and Y. Öhrn, Propagators in Quantum Chemistry, (Academic, London, 1973).Google Scholar
- [5]L. S. Cederbaum, and W. Domcke, Adv. Chem. Phys. 36, 205, (1977), and references therein.CrossRefGoogle Scholar
- [6]Y. Öhrn, in The New World of Quantum Chemistry, Proceedings from the 2nd International Congress on Quantum Chemistry, (B. Pullman, and R. Parr, Eds. Reidel, Boston, 1976), p 57; and references therein.Google Scholar
- [7a]J. Simons, and W. D. Smith, J. Chem. Phys. 58, 4899 (1973)CrossRefGoogle Scholar
- [7b]J. Simons, and W. D. Smith, J. Simons, Chem. Phys. Lett., 25, 122, (1974)CrossRefGoogle Scholar
- [7b]K. M. Griffing, and J. Simons, J. Chem. Phys. 62, 535, (1975)CrossRefGoogle Scholar
- [7c]K. M. Griffing, and J. Simons, J. Kenney, and J. Simons, J. Chem. Phys. 62, 592 (1975).CrossRefGoogle Scholar
- [8]C. Møller, and M. S. Plesset, Phys. Rev. 46, 618 (1934).CrossRefGoogle Scholar
- [9]P. S. Bagus, Phys. Rev. 139, 619 (1965).CrossRefGoogle Scholar
- [10]G. Born, H. A. Kurtz, and Y. Öhrn, J. Chem. Phys. 68, 74 (1978).CrossRefGoogle Scholar
- [11]G. D. Purvis, and Y. Öhrn, J. Chem. Phys. 62, 2045 (1975).CrossRefGoogle Scholar
- [12]O. Goscinski, and B. Lukman, Chem. Phys. Lett., 7 573, (1970).CrossRefGoogle Scholar
- [13]L. Tyner Redmon, G. D. Purvis, and Y. Öhrn, J. Chem. Phys. 63, 5011 (1975).CrossRefGoogle Scholar
- [14a]P. O. Löwdin, Phys. Rev. 139, A357 (1965);CrossRefGoogle Scholar
- [14b]P. O. Löwdin, Int. J. Quantum Chem. S4, 231 (1971).Google Scholar
- [15]C. Nehrkorn, G. D. Purvis, and Y. Öhrn, J. Chem. Phys. 64, 1752 (1976).CrossRefGoogle Scholar
- [16]See references [9], and [10].Google Scholar
- [17a]O. Goscinski, B. T. Pickup, and G. D. Purvis, Chem. Phys. Lett. 22, 167 (1973)CrossRefGoogle Scholar
- [17b]O. Goscinski, M. Hehenberger, B. Roos, and P. Siegbahn, Chem. Phys. Lett. 33, 427 (1975).CrossRefGoogle Scholar
- [18]H. A. Kurtz, and Y. Öhrn, J. Chem. Phys. 00, 0000 (1978).Google Scholar
- [19]T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).CrossRefGoogle Scholar
- [20]S. J. Huzinaga, J. Chem. Phys. 42, 1293 (1965).CrossRefGoogle Scholar
- [21]J. Almlöf, University of Stockholm Inst. of Physics Report 72–09 (1972).Google Scholar
- [22]L. S. Cederbaum, G. Holneicher, W. von Niessen, Chem. Phys. Lett. 18, 503 (1973).CrossRefGoogle Scholar
- [23]I. Hubac, and M. Urban, Theoret. Chim. Acta (Berl.) 45, 187 (1977).Google Scholar
Copyright information
© D. Reidel Publishing Company, Dordrecht, Holland 1978