Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 40))

Abstract

The biggest advance in the theory of nonlinear equations in recent years has been the invention of the so-called inverse scattering method by Gardner et al. [1] in 1967, who used it to solve the initial value problem for the Korteweg-de Vries [2] equation. The method was systematized by Lax [3] in 1968 and it was given definitive respectability by Zacharov and Shabat [4] in 1971 when they solved the Schröding er equation with a cubic nonlinearity. By now, a large number of equations can be solved this way [5]. This method, in the language of Lax [3], is the following: Given an evolution equation, say, of the form

$$\frac{{\partial u}}{{\partial u}} = K\left( u \right),$$
(1.1)

one finds firstly operators L and B such that Equation (1.1) is equivalent to the relation

$$\frac{{\partial L}}{{\partial t}} = i\left[ {L,B} \right],$$
(1.2)

In this case the spectrum of L does not depend on time and one says that the flow of L is isospectral. Secondly, one tries to associate a scattering problem with the operator L (which acts, for instance, on a Hilbert space). This typically restricts the type of asymptotic behavior allowed on u. Finally, the direct and inverse scattering problems associated with L must be solved.

Lectures given at NATO Advanced Study Institute on Nonlinear. Equations in Physics and Mathematics, Istanbul, August 1977.

Supported in part by the NSF Grant No. GP-40768X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Gardner, J. Green, M. Kruskal and R. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Article  MATH  Google Scholar 

  2. D. J. Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895).

    Google Scholar 

  3. P. L. Lax, Commun. Pure and Appl. Math., 21, 467 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. E. Zacharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Soy. Physics TETP 34, 62 (1972)].

    Article  Google Scholar 

  5. See the article by R. Bullough in these Proceedings.

    Google Scholar 

  6. H. D. Wahlquist and F. B. Estabrook, T. Math. Phys. 16., 1 (1975) and 17, 1293 (1976). See also their “Prolongation Structures, Connection Theory and Backlund Transformation,” to be published in the Proceedings of the International Symposium of Nonlinear Evolution Equations Solvable via the Inverse Scattering Transformation, Accademia dei Lincei, Rome, June 15–18, 1977, F. Calogero, Ed., and references therein. J. Corones and D. Levermore, Courant Institute Report (unpublished). J. Corones, “Using Pseudopotentials,”Iowa State Report (unpublished).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. E. Lamb, Jr., Phys. Rev. Lett. 37, 235 (1976) and I. Math. Phys. 18, 1654 (1977).

    Article  MathSciNet  Google Scholar 

  8. F. Lund and T. Regge, Phys. Rev. D14, 1524 (1976); F. Lund, Phys. Rev. D15, 1540 (1977); Phys. Rev. Lett. 38, 1175 (1977); “Classically Solvable Field Theory Model,”Princeton Preprint, 1977, Ann. Phys. (to be published).

    Google Scholar 

  9. L. Bianchi, Lezioni di Geometria Diferenziale ( Spoerri, Pisa, 1922 ).

    Google Scholar 

  10. M. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Phys. Rev. Lett. 30, 1262 (1973) and Stud. Appl. Math. 53, 249 (1974); L. A. Takhtadjan, Zh. Eksp. Teor. Fiz. 66 (1974) [Sov. Phvs. JETP 39, 228 (1974)]; V. E. Zakharov, L. A. Takhtadzhan and L. D. Faddeev, Dokl. Akad. Nauk. SSSR 219, 1334 (1974) [Sov. Phvs. Dikl. 19, 824 (1975)]; L. A. Takhtadzhan and L. D. Faddeev, Teor. Mat. Fiz. 21, 160 (1974).

    Article  MathSciNet  Google Scholar 

  11. These results are standard. See, for example, J. J. Stoker, Differential Geometry, Wiley, New York-London-Sidney- Toronto, 1969, andM. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Boston, 1975.

    Google Scholar 

  12. A. Neveu and N. Papanicolaou, “Integrability of the Classical (www)2 and (ii4Ji)22 (wiw5wi)22 Interactions,”Commun. Math. Phys. 58, 31 (1978).

    Article  MathSciNet  Google Scholar 

  13. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 , 345 (1961).

    Article  Google Scholar 

  14. D. J. Gross and A. Neveu, Phys. Rev. D14, 3235 (1974).

    Google Scholar 

  15. R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D12, 2443 (1975).

    MathSciNet  Google Scholar 

  16. S. S. Shei, Phys. Rev. D14, 535 (1976).

    Google Scholar 

  17. This equation has also been considered by B. S. Getmanov, Pis’ma Zh. Eksp. Teor. Fiz. 2JL, 132 (1977) [JETP Lett. 25, 119 (1977)].

    Google Scholar 

  18. K. Pohlmeyer, Commun. Math. Phys. 46, 207 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Gell-Mann and M. Lévy, Nuovo Cim. 16, 705 (1960); F. Gürsey, Nuovo Cim. 16 , 230 (1960); S. Weinberg, Phys. Rev. 166, 1568 (1968).

    Article  MATH  Google Scholar 

  20. S. Weinberg, 1976 Erice Lecture Notes (unpublished) and references therein.

    Google Scholar 

  21. A. A. BelavinandA. M. Polyakov, Zh. Eksp. Teor. Fiz. Pis’ma Red. 22, 503 (1975), [TE TP Lett. 22, 245 (1975)].

    Google Scholar 

  22. L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1925, Chapter V.

    Google Scholar 

  23. P. L. Tchebychef,“Sur la Coupure des Vêtements,” Oeuvres, Bd. II, S. 708, 1878.

    Google Scholar 

  24. This problem has been independently considered by M. Jaulent as arising from a Schröding er equation with a velocity-dependent potential. See Jaulent’s contribution to these Proceedings.

    Google Scholar 

  25. F. Prats and J. Toll, Phys. Rev. 113, 363 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. J. Kaup, Prog. Theor. Phys. 54, 396 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. E. Zacharov and L. D. Faddeev, Func. Anal, and Its Applic. 5, 280 (1972).

    Article  Google Scholar 

  28. B. Julia and F. Lund, in preparation.

    Google Scholar 

  29. P. A. M. Dirac, Lectures in Quantum Mechanics, Yeshiva University, New York, 1964. See also A. J. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian Systems, Accademia dei Lincei, Rome, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Lund, F. (1978). Solitons and Geometry. In: Barut, A.O. (eds) Nonlinear Equations in Physics and Mathematics. NATO Advanced Study Institutes Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9891-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9891-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9893-3

  • Online ISBN: 978-94-009-9891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics