A Model for the Specific Site Melting of DNA in Vivo

  • Bruce McConnell
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 11)


While there is evidence that strand separation in DNA is an important control event for both transcription and replication (1,2) there is no specific model that would provide a satisfactory mechanistic account as to how localized helical destabilization might be initiated by a protein and be restricted to a specific DNA sequence under the highly stabilizing conditions found in vivo (3). An hypothetical model for sequence-specific destabilization can be formulated quite naturally on the basis of proton exchange mechanisms in DNA to be described in this report. This model provides for the exclusive destabilization of G-C rich sequences under the influence of polycationic sequences of proteins. Superficially, these features are contradictory to the well known stability of G-C regions and the ionic stabilization of DNA by polycations. In addition, the model contains the apparently self-contradictory notion that an increase in H-bond strength will establish the condition of destabilization. Therefore, justification of such a model will be based on close examination of a rational basis for its formulation and second on a comparison of its predictive features with several general observations on DNA melting reported in the literature.


Proton Transfer Double Helix Ionic Stabilization Imino Proton Neutral Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zillig, W., Zechel, K., Rabussay, D., Schachner, M., Sethi, V.S., Palm, P., Heil, A. and Scifert, W. (1970). Cold Spr. Hbr. Symp. on Quant. Biol. 35, 47.Google Scholar
  2. 2.
    Alberts, B. and Frey, L. (1970). Nature (London) 227, 1313.CrossRefGoogle Scholar
  3. 3.
    von Hippel, P.H. and McGhee, J.D. (1972). Ann. Rev. Biochem. 41, 231.CrossRefGoogle Scholar
  4. 4.
    McConnell, B. and Seawell, P.C. (1972). Biochemistry 11, 4832.Google Scholar
  5. 5.
    McConnell, B. (1978). Biochemistry, submitted April 1977. Preprints available upon request.Google Scholar
  6. 6.
    McConnell, B. (1974). Biochemistry 13, 4516.CrossRefGoogle Scholar
  7. 7.
    Crooks, J.E. (1975) in Proton Transfer Reactions, E.F. Caldin and V. Gold, eds. Halsted Press, John Wiley and Sons, New York, p. 153.Google Scholar
  8. 8.
    Teitlebaum, H. and Englander, S.W. (1975). J. Mol. Biol. 92, 55 and 79.CrossRefGoogle Scholar
  9. 9.
    McConnell, B. and von Hippel, P.H. (1970). J. Mol. Biol. 50, 297 and 317 (see references therein).CrossRefGoogle Scholar
  10. 10.
    Jencks, W.P. (1969). Catalysis in Chemistry and Enzymology. McGraw-Hill Inc., New York, p. 415.Google Scholar
  11. 11.
    Bloomfield, V.H., Crothers, D.M. and Tinoco, I. Jr. (1974). The Physical Chemistry of Nucleic Acids. Harper and Row, New York, pp. 349–351.Google Scholar
  12. 12.
    Hoo, D. and McConnell, B. (1978). In preparation.Google Scholar
  13. 13.
    Szybalski, W., Kubinski, H. and Sheldrick, P. (1966). Cold Spr. Hbr. Symp. on Quant. Biol. 31, 123.Google Scholar
  14. 14.
    Dickson, R.C., Abelson, J., Barnes, W.M. and Reznikoff, W.S. (1975). Science 187, 27.CrossRefGoogle Scholar
  15. 15.
    Anderson, W.B., Schneider, A.B., Emmer, M., Perlman, R.L. and Pastan, I. (1971). J. Biol. Chem. 246, 5929.Google Scholar
  16. 16.
    Gruenwedel, D.W., Hsu, C.-H. and Lu, D.S. (1971). Biopolymers 10, 47.CrossRefGoogle Scholar
  17. 17.
    Mandel, M. (1962). J. Mol. Biol. 5, 435.CrossRefGoogle Scholar
  18. 18.
    Olins, D.E., Olins, A.L. and von Hippel, P.H. (1967). J. Mol. Biol. 24, 157.CrossRefGoogle Scholar
  19. 19.
    Hiai, S. (1965). J. Mol. Biol. 11, 672.CrossRefGoogle Scholar
  20. 20.
    Eichorn, G. (1962). Nature 194, 474.CrossRefGoogle Scholar
  21. 21.
    Melchior, W.B. Jr. and von Hippel, P.H. (1973). Proc. Nat. Acad. Sci. 70, 298.CrossRefGoogle Scholar
  22. 22.
    Strauss, V.P., Helfgott, C. and Puck, H. (1967). J. Phys. Chem. 71, 2250.CrossRefGoogle Scholar
  23. 23.
    Malcolm, A.D.B., Mitchell, G.J. and Wasylyk, B. (1974). Biochem. Soc. T. 2, 863.Google Scholar
  24. 24.
    Ong, E.C. and Fasman, G.D. (1976). Biochemistry 15, 477.CrossRefGoogle Scholar
  25. 25.
    Lees, C.W. and von Hippel, P.H. (1968). Biochemistry 7, 2480.CrossRefGoogle Scholar
  26. 26.
    Felsenfeld, G., Sandeen, G. and von Hippel, P.H. (1963). Proc. Nat. Acad. Sci. U.S.A. 50, 644.CrossRefGoogle Scholar
  27. 27.
    Richardson, J.P. (1969). Prog. Nuc. Acid Res. and Mol. Biol. 9, 75.CrossRefGoogle Scholar
  28. 28.
    Wickner, W. and Romberg, A. (1974). J. Biol. Chem. 249, 6244.Google Scholar
  29. 29.
    Woodbury, C.P. and Record, M.T. (1975). Biophys. J. 15, A-92.Google Scholar
  30. 30.
    Borer, P.N., Kan, L.S. and Ts’o, P.O.P. (1975). Biochemistry 14, 4847.CrossRefGoogle Scholar
  31. 31.
    Eigen, M. (1964). Angew. Chemie. Int. Ed. 1, 1.CrossRefGoogle Scholar
  32. 32.
    Allen, L.C. (1975). J. Am. Chem. Soc. 97, 6921.CrossRefGoogle Scholar
  33. 33.
    Frank-Kamenetskii, M.D. and Lazurkin, Yu. S. (1974). Ann. Rev. Biophys. and Bioengr. 3, 127.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • Bruce McConnell
    • 1
  1. 1.University of HawaiiHonoluluUSA

Personalised recommendations