Skip to main content

Linked-Cluster Perturbation Theory for Closed and Open-Shell Systems: Derivation of Effective π-Electron Hamiltonians

  • Conference paper
Quantum Theory of Polymers

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 39))

  • 102 Accesses

Abstract

The Brueckner-Goldstone form of linked-cluster perturbation theory is derived, together with its open-shell analog, by an elementary time-independent approach. This serves to focus attention on the physical interpretation of the results. The open-shell expansion is used to provide a straightforward justification for the effective π-electron Hamiltonians of planar organic molecules.

This work was carried out under the auspices of the U.S.E.R.D.A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Kelly, Phys. Rev, 131, 684 (1963)

    Article  Google Scholar 

  2. H. P. Kelly, Phys. Rev, 136, B896 (1964)

    Article  Google Scholar 

  3. H. P. Kelly, Adv. Chenu Pys. 14, 129 (1969).

    Article  CAS  Google Scholar 

  4. U. Kaldor, Phys. Rev. Lett. 31, 1338 (1973)

    Article  CAS  Google Scholar 

  5. U. Kaldor, J. Chem. Phys. 63, 2199 (1975)

    Article  CAS  Google Scholar 

  6. P. S. Stern and U. Kaldor, J. Chem. Phys. 64, 2002 (1976).

    Article  CAS  Google Scholar 

  7. B. H. Brandow, Proc. Int. Sch. Phys. “Enrico Fermi” 36, 496 (1966).

    Google Scholar 

  8. B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).

    Article  CAS  Google Scholar 

  9. B. H. Brandow, Adv. Quantum Chem. 10 (in press).

    Google Scholar 

  10. B. H. Brandow, Adv. Phys. (in press).

    Google Scholar 

  11. D. J. Klein, J. Chem. Phys. 61, 786 (1974).

    Article  CAS  Google Scholar 

  12. B. H. Brandow, in Effective Interactions and Operators in Nuclei, B. R. Barrett, ed. (Springer-Verlag, Berlin and New York, 1975).

    Google Scholar 

  13. R. G. Parr, The Quantum Theory of Molecular Electronic Structure, (Benjamin, New York, 1964).

    Google Scholar 

  14. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, (McGraw-Hill, New York, 1969).

    Google Scholar 

  15. H. Berthod, C. Giessner-Prettre, and A. Pullman, Theoret. Chim. Acta. 5, 53 (1966).

    Article  CAS  Google Scholar 

  16. J. Ladik, D. K. Rai, and K. Appel, J. Mol. Spectry. 27, 72 (1968).

    Article  CAS  Google Scholar 

  17. C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).

    Article  Google Scholar 

  18. P.-O. Löwdin, J. Math. Phys. 3, 969 (1962).

    Article  Google Scholar 

  19. J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

    Google Scholar 

  20. R. Manne, Int. J. Quantum Chem. Symp. (in press).

    Google Scholar 

  21. U. Kaldor, J. Comput. Phys. 20, 432 (1976).

    Article  Google Scholar 

  22. K. A. Brueckner, Phys. Rev. 100, 36 (1955).

    Article  CAS  Google Scholar 

  23. K. A. Brueckner, in The Many-Body Problem, C. de Witt, ed. (Dunod, Paris, 1959).

    Google Scholar 

  24. N. M. Hugenholtz, Physica 23, 481 (1957).

    Article  CAS  Google Scholar 

  25. L. M. Frantz and R. L. Mills, Nucl. Phys. 15, 16 (1960).

    Article  Google Scholar 

  26. R. P. Feynman, Phys. Rev. 76, 749 (1949).

    Article  CAS  Google Scholar 

  27. V. Ambegaokar, in Superconductivity, R. D. Parks, ed. (Dekker, New York, 1969), Vol. 2, p. 1359.

    Google Scholar 

  28. G. E. Brown, Many-Body Problems (North-Holland Publ., Amsterdam, 1972), p. 5.

    Google Scholar 

  29. J. Paudus, J. Čižek, and I. Shavitt, Phys. Rev. A 5, 50 (1972)

    Article  Google Scholar 

  30. D. L. Freeman, Phys. Rev. A or B (in press).

    Google Scholar 

  31. P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951).

    Article  Google Scholar 

  32. P. J. Ellis and E. Osnes, Rev. Mod. Phys. (in press).

    Google Scholar 

  33. P. Westhaus, E. G. Bradford, and D. Hall, J. Chem. Phys. 62, 1607 (1975).

    Article  CAS  Google Scholar 

  34. See also S. Fischer, Int. J. Quantum Chem. Symp. 3, 651 (1970).

    Google Scholar 

  35. S. Iwata and K. F. Freed, J. Chem. Phys. 61, 1500 (1974).

    Article  CAS  Google Scholar 

  36. S. Iwata and K. F. Freed, J. Chem. Phys. 65, 1071 (1976).

    Article  CAS  Google Scholar 

  37. P. Westhaus, Int. J. Quantum Chem. Symp. 7, 463 (1973).

    Article  CAS  Google Scholar 

  38. K. F. Freed, J. Chem. Phys. 60, 1765 (1974).

    Article  CAS  Google Scholar 

  39. B. H. Brandow, Phys. Rev. B 12, 3464 (1975).

    Article  CAS  Google Scholar 

  40. H. P. Kelly, Phys. Rev. 136, 896 (1964)

    Article  CAS  Google Scholar 

  41. H. J. Silverstone and M.-L. Yin, J. Chem. Phys. 49, 2026 (1968)

    Article  CAS  Google Scholar 

  42. S. Huzinaga and C. Arnau, Phys. Rev. A 1, 1285 (1970)

    Article  Google Scholar 

  43. J. H. Miller and H. P. Kelly, Phys. Rev. A 3, 578 (1971). See also Ref. 29.

    Article  Google Scholar 

  44. T. L. Gilbert, in Molecular Orbitals in Chemistry, Physics, and Biology, P.-O. Löwdin and B. Pullman, eds. (Academic Press, New York, 1964), p. 405

    Google Scholar 

  45. T. L. Gilbert and A. B. Kunz, Phys. Rev. B 10, 3706 (1974).

    Article  Google Scholar 

  46. E. G. Bradford and P. Westhaus, J. Chem. Phys. 64, 4276 (1976).

    Article  CAS  Google Scholar 

  47. V. Kvasnicka, Phys. Rev. A 12, 1159 (1975).

    Article  Google Scholar 

  48. S. Iwata and K. F. Freed, Chem. Phys. Lett. 38, 425 (1976).

    Article  CAS  Google Scholar 

  49. B. H. Brandow, Ann. Phys. (N.Y.) 64, 21 (1971) see Appendix C.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Brandow, B.H. (1978). Linked-Cluster Perturbation Theory for Closed and Open-Shell Systems: Derivation of Effective π-Electron Hamiltonians. In: André, JM., Delhalle, J., Ladik, J. (eds) Quantum Theory of Polymers. NATO Advanced Study Institutes Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9812-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9812-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9814-8

  • Online ISBN: 978-94-009-9812-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics