Correlation Energy in Solids

  • N. H. March
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 39)

Abstract

The problem of the correlation energy in solids is discussed via three principal approaches:
  1. (i)

    Density functional theory. Here the main basis is the many-body study of interacting electrons in jellium.

     
  2. (ii)

    Strong correlation in narrow energy bands. The transition metals afford the main area of interest here. The work of Gutzwiller is given some prominence.

     
  3. (iii)

    Bond localization of electrons. While this approach is difficult to make quantitative, it is, it appears, a powerful way of simulating electron correlation effects.

     

Keywords

Stake Ferro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bennett and J.C. Inkson, J. Phys. C10, 987 (1977).Google Scholar
  2. 2.
    N.F. Berk and J.R. Schrieffer, Phys. Rev. Letts. 17, 433 (1969).CrossRefGoogle Scholar
  3. 3.
    W.F. Brunnen and T.M. Rice, Phys. Rev. B2, 4302 (1970).Google Scholar
  4. 4.
    C.A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).Google Scholar
  5. 5.
    P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).CrossRefGoogle Scholar
  6. 6.
    S. Doniach and S. Engelberg, Phys. Rev. Letts. 17, 750 (1969).CrossRefGoogle Scholar
  7. 7.
    F. Duscastelle, J. Physique 31, 1055 (1970).CrossRefGoogle Scholar
  8. 8.
    J. Friedel in Physics of Metals I, Electrons, J.M. Ziman, ed. Cambridge Univ. Press, 1969.Google Scholar
  9. 9.
    J. Friedel and C.M. Sayers, J. Physique 38, 697 (1977). ibid 38, L263.CrossRefGoogle Scholar
  10. 10.
    M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1957).CrossRefGoogle Scholar
  11. 11.
    K.A. Gschneider, Solid State Physics 16, 275, eds. F. Seitz and D. Turnbull, Acad. Press, New York (1964).Google Scholar
  12. 12.
    M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965).CrossRefGoogle Scholar
  13. 13.
    L. Hedin, Phys. Rev. 139, A796 (1965).Google Scholar
  14. 14.
    L. Hedin and S. Lundquist, Solid State Physics 23, 1, eds. F. Seitz, D. Turnbull and H. Ehrenreich, Academic Press, New York (1969).Google Scholar
  15. 15.
    F. Herman, J.P. van Dyke and I.B. Ortenburger, Phys. Rev. Letts. 22, 807 (1969).CrossRefGoogle Scholar
  16. 16.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  17. 17.
    J.C. Inkson, J. Phys. C5, 2599 (1972).Google Scholar
  18. 18.
    B. Johansson and K.F. Berggren, Phys. Rev. 181, 855 (1969).CrossRefGoogle Scholar
  19. 19.
    E.O. Kane, Phys. Rev. B4, 1910 (1971); Phys. Rev. B5, 1493 (1972).Google Scholar
  20. 20.
    W. Kohn and L.J. Sham, Phys. Rev. 140A, 1133 (1965).CrossRefGoogle Scholar
  21. 21.
    E.H. Lieb and C. Wu, Phys. Rev. Letts. 20, 1445 (1968).CrossRefGoogle Scholar
  22. 22.
    N.H. March, Phys. Rev. 110, 604 (1958).CrossRefGoogle Scholar
  23. 23.
    C.M. Sayers, J. Phys. F7, 1157 (1977).CrossRefGoogle Scholar
  24. 24.
    J.R. Schrieffer, Theory of Superconductivity, Benjamin Press, New York (1964)Google Scholar
  25. 25.
    J.C. Slater, Phys. Rev. 81, 385 (1951).CrossRefGoogle Scholar
  26. 26.
    J.C. Slater and H.M. Krutter, Phys. Rev. 47, 559 (1935).CrossRefGoogle Scholar
  27. 27.
    B. Stenhouse, P.J. Grout, N.H. March and J. Wenzel, Phil. Mag. (July number, 1977).Google Scholar
  28. 28.
    J.C. Stoddart, P. Stoney, N.H. March and I.B. Ortenburger, Nuovo Cimento, 23B, 15 (1974).Google Scholar
  29. 29.
    S. Weinbaum, J. Chem. Phys. 1, 593 (1933).CrossRefGoogle Scholar
  30. 30.
    E.P. Wigner, Phys. Rev. 46, 1002 (1934), Trans. Far. Soc. 34, 678 (1938).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

  • N. H. March
    • 1
  1. 1.Theoretical Chemistry DepartmentUniversity of OxfordOxfordEngland

Personalised recommendations