Skip to main content

Quantum Mechanical Treatment of Transport Properties of Semiconductors: Possible Application to Polymers

  • Conference paper
  • 91 Accesses

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 39))

Abstract

Charge and energy transport comprises a very large part of the physics of semiconductors. The aim of the present set of lectures is a discussion of some of the fundamental concepts of transport theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. P. Kadanoff and G. Baym, Quanturn Statistica1 Mechanics (Benjamin, New York, 1962).

    Google Scholar 

  2. Our treatment of the problem is essentially that of N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston New York, 1976), Chpt. 2.

    Google Scholar 

  3. Our treatment of the problem is essentially that of F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968), Chpt. 5.

    Google Scholar 

  4. For a brief introduction to the Fermi liquid see C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), 5th ed., Chpt. 10.

    Google Scholar 

  5. F. W. Sears, Thermodynamics (Addison-Wesley, Reading, 1953), 2nd ed., Chpt. 14.

    Google Scholar 

  6. See Ref. [2].

    Google Scholar 

  7. See Ref. [4]., Chpt. 8.

    Google Scholar 

  8. B. R. Nag, Theory of Electrical Transport in Semiconductors (Pergamon, New York, 1972), Chpt. 7.

    Google Scholar 

  9. M. Kohler, Ann. Physik 40, 601 (1942).

    Article  CAS  Google Scholar 

  10. For a compilation, see F. Gutman and L. E. Lyons, Organic Semiconductors (Wiley, New York, 1967), Section 4.4.

    Google Scholar 

  11. See L. I. Boguslavskii and A. V. Vannikov, Organic Semiconductors and Biopolymers (Plenum, New York, 1970), p. 85 ff.

    Google Scholar 

  12. J. Yamashita and T. Kurosawa, J. Phys. Soc. Jpn. 15, 802 (1960).

    Article  CAS  Google Scholar 

  13. For inorganic semiconductors, theories of “hopping” have been given by A. Miller and A. Abrahams, Phys. Rev. 120, 745 (1960)

    Article  CAS  Google Scholar 

  14. N. F. Mott and W. D. Twose, Advan. Phys. 10, 107 (1961).

    Article  CAS  Google Scholar 

  15. See (an article by M. Ito in) A. B. Zahlan, Excitons, Magnons, and Phonons in Molecular Crystals (Cambridge University Press, Cambridge, 1968).

    Google Scholar 

  16. See Ref. [11], p. 10 ff.

    Google Scholar 

  17. See (an article by N. Itoh and T. Chong in) K. Masuda and M. Silver, Energy and Charge Transfer in Organic Semiconductors (Plenum, New York, 1974).

    Google Scholar 

  18. See (an article by U. Itoh and K. Takeishi in) Ref. [l6].

    Google Scholar 

  19. See, for instance, band structure calculations on the best studied material, anthracene, by O. H. LeBlanc, J. Chem. Phys. 35, 1275 (1961)

    Article  CAS  Google Scholar 

  20. J. L. Katz, S. A. Rice, S. Choi, and J. Jortner, J. Chem., Phys. 39, 1683 (1963)

    Article  CAS  Google Scholar 

  21. R. Silbey, J. Jortner, S. A. Rice, and M. T. Vala, Jr., J. Chem. Phys. 42, 733 (1965).

    Article  CAS  Google Scholar 

  22. See Ref. [11], p. 69 ff.

    Google Scholar 

  23. Recent mobility measurements on substituted durene crystals bring out the importance of this point. Furthermore, Z. Burshtein and D. F. Williams, J. Chem, Phys. 66, 2746 (1977), have also established that conduction in substituted durene occurs definitely by the band mechanism.

    Google Scholar 

  24. See Ref. [11], p. 37 ff.

    Google Scholar 

  25. See Ref. [21].

    Google Scholar 

  26. See Ref. [11], p. 79 ff.

    Google Scholar 

  27. See Ref. [11], p. 58.

    Google Scholar 

  28. P. Jordan, Naturwiss 26, 693 (1938).

    Article  CAS  Google Scholar 

  29. A. Szent-Györgyi, Nature 148, 158 (1941).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Csavinszky, P. (1978). Quantum Mechanical Treatment of Transport Properties of Semiconductors: Possible Application to Polymers. In: André, JM., Delhalle, J., Ladik, J. (eds) Quantum Theory of Polymers. NATO Advanced Study Institutes Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9812-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9812-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9814-8

  • Online ISBN: 978-94-009-9812-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics