Advertisement

Theoretical Study of Some Simple Organic Reactions

  • Yves Jean
Part of the Quantum Theory of Chemical Reactions book series (QTCR, volume 1)

Abstract

The mechanisms of four gas phase organic reactions are studied through ab-initio LCAO-MO-SCF calculations. These reactions are: (i) cis-trans isomerization of cyclopropane; (ii) decomposition of cyclobutane into two ethylene molecules; (iii) the Diels-Alder reaction; (iv) decomposition of 1-pyrazolines into cyclopropane and nitrogen. The structure and the electronic properties of the various transition states are discussed. In particular, it is shown that a diradical can be either a transition state, a secondary intermediate, or a “transient point” on a hillside.

Keywords

Transition State Potential Energy Surface Organic Reaction Potential Energy Curve Ethylene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Jean, L. Salem, J.S. Wright, J.A. Horsley, C. Moser and R.M. Stevens Pure Appl. Chem., Suppl. 1, 197 (1971)Google Scholar
  2. 2.
    G.A. Segal, J. Amer. Chem. Soc. 96, 7892 (1974)CrossRefGoogle Scholar
  3. 3.
    R.E. Townshend, G. Ramunni, G. Segal, W.J. Hehre and L. Salem, J. Amer. Chem. Soc. 98, 2190 (1976)CrossRefGoogle Scholar
  4. 4.
    P.C. Hiberty and Y. Jean, to be publishedGoogle Scholar
  5. 5.
    W.J. Hehre, W.A. Lathan, R. Ditchfield, M.D. Newton and J.A. Pople, Program n° 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.Google Scholar
  6. 6.
    A minimal basis set of Slater type orbitals has been used for this reaction. R.M. Stevens, J. Chem. Phys. 52, 1397 (1970)CrossRefGoogle Scholar
  7. 7.
    W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 51, 2657 (1969)CrossRefGoogle Scholar
  8. 8.
    R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys. 54, 724 (1971)CrossRefGoogle Scholar
  9. 9.
    R.K. Nesbet, Rev. Mod. Phys, 35, 552 (1963)CrossRefGoogle Scholar
  10. 10.
    L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl. 11, 92 (1972)CrossRefGoogle Scholar
  11. 11.
    B.S. Rabinovitch, E.W. Schlag and K.B. Wiberg, J. Chem. Phys. 28, 504 (1958)CrossRefGoogle Scholar
  12. 12.
    F.T. Smith, J. Chem. Phys. 29, 235 (1958)CrossRefGoogle Scholar
  13. 13.
    R. Hoffmann, J. Amer. Chem. Soc. 90, 1475 (1968)CrossRefGoogle Scholar
  14. 14.
    S.W. Benson, J. Chem. Phys. 34, 521 (1961)CrossRefGoogle Scholar
  15. 15.
    S.W. Benson, “Thermochemical Kinetics”, John Wiley and Sons, New-York, N.Y. (1968)Google Scholar
  16. 16.
    H.E. O’Neal and S.W. Benson, J. Phys. Chem. 72, 1866 (1968)CrossRefGoogle Scholar
  17. 17.
    S.L. Buchwalter and G.L. Closs, J. Amer. Chem. Soc. 97, 3857 (1975)CrossRefGoogle Scholar
  18. 18.
    J.A. Berson and L.D. Pedersen, J. Amer. Chem. Soc, 97, 238 (1975)CrossRefGoogle Scholar
  19. 19.
    R.B. Woodward and R. Hoffmann, Angew. Chem.,Int. Ed. Engl. 8, 781 (1969)CrossRefGoogle Scholar
  20. 20.
    J.S. Wright and L. Salem, J. Amer. Chem. Soc. 94, 322 (1972)CrossRefGoogle Scholar
  21. 21.
    a) A.T. Coks, H.M. Frey and D.R. Stevens, Chem. Comm. 1969, 458Google Scholar
  22. b) J.E. Baldwin and P.W. Ford, J. Amer. Chem. Soc. 91, 7192 (1969)CrossRefGoogle Scholar
  23. 22.
    F. Kern and W.D. Walters, J. Amer. Chem. Soc. 75, 6196 (1953)CrossRefGoogle Scholar
  24. 23.
    S.W. Benson, J. Chem. Phys. 46, 4920 (1967)CrossRefGoogle Scholar
  25. 24.
    In this study, a 15x15 configuration interaction follows the SCF calculation. It includes all the single and double excitations from the two highest occupied to the two lowest unoccupied molecular orbitals.Google Scholar
  26. 25.
    See reference 3 and references thereinGoogle Scholar
  27. 26.
    P.D. Bartlett and K.E. Schueller, J. Amer. Chem. Soc. 90, 6071, 6077 (1968)CrossRefGoogle Scholar
  28. 27.
    a) M.J.S. Dewar, A.C. Griffin and D. Kirschner, J. Amer. Chem. Soc. 96, 6225 (1974)CrossRefGoogle Scholar
  29. b) L.A. Burke, G. Leroy and M. Sana, Theor. Chim. Acta 40, 313 (1975)CrossRefGoogle Scholar
  30. 28.
    a) M. Uchiyama, T. Tomioha and A. Amano, J. Phys. Chem. 68, 1878 (1964)CrossRefGoogle Scholar
  31. b) W. Tsang, J. Chem. Phys. 42, 1805 (1965)CrossRefGoogle Scholar
  32. W. Tsang, Int. J. Chem. Kinet. 2, 311 (1970)CrossRefGoogle Scholar
  33. 29.
    a) R.J. Crawford, R.J. Dummel and A. Mishra, J. Amer. Chem. Soc. 87, 3023 (1965)CrossRefGoogle Scholar
  34. b) R.J. Crawford and A. Mishra, J. Amer. Chem. Soc. 87, 3768 (1965)CrossRefGoogle Scholar
  35. c) R.J. Crawford and A. Mishra, J. Amer. Chem. Soc. 88, 3959 (1966)CrossRefGoogle Scholar
  36. d) R.J. Crawford and G.L. Erickson, J. Amer. Chem. Soc. 89, 3907 (1967)Google Scholar
  37. (e) R.J. Crawford and L.H. Ali, J. Amer. Chem. Soc. 89, 3908 (1967)Google Scholar
  38. (f) A. Mishra and R.J. Crawford, Can. J. Chem. 47, 1515 (1969)CrossRefGoogle Scholar
  39. g) M.P. Schneider and R.J. Crawford, Can. J. Chem. 48, 628 (1970)CrossRefGoogle Scholar
  40. h) R.J. Crawford and M. Ohno, Can. J. Chem.52, 3134 (1974)CrossRefGoogle Scholar
  41. i) R.J. Crawford and H. Tokunaga, Can. J. Chem. 52, 4033 (1974)CrossRefGoogle Scholar
  42. 30.
    a) D.E. McGreer, N.W.K. Chiu, M.G. Vinje and K.C.K. Wong, Can. J. Chem. 43, 1407 (1965)CrossRefGoogle Scholar
  43. b) D.E. McGreer and W.S. Wu, Can. J. Chem. 45, 461 (1967)CrossRefGoogle Scholar
  44. 31.
    a) P.B. Condit and R.G. Bergman, Chem. Comm. 4 (1971)Google Scholar
  45. b) D.H. White, P.B. Condit and R.G. Bergman, J. Amer. Chem. Soc. 94, 7931 (1972)CrossRefGoogle Scholar
  46. c) R.A. Keppel and R.G. Bergman, J. Amer. Chem. Soc. 94, 1350 (1972)CrossRefGoogle Scholar
  47. d) R.G. Bergamn in “Free Radicals”, Vol. 1,. J. Kochi, Ed. Wiley, New York, N.Y., 1973, Chapter 5Google Scholar
  48. e) T.C. Clarke, L.A. Wendling and R.G. Bergman, J. Amer, Chem. Soc. 97, 5638 (1975)CrossRefGoogle Scholar
  49. 32.
    C.G. Overberger and J.P. Anselme, J. Amer. Chem. Soc. 84, 869 (1962)CrossRefGoogle Scholar
  50. b) C.G. Overberger, J.P. Anselme and J.R. Hall, J. Amer. Chem. Soc. 85, 2752 (1963)CrossRefGoogle Scholar
  51. c) C.G. Overberger and J.P. Anselme, J. Amer. Chem. Soc. 86, 658 (1964)CrossRefGoogle Scholar
  52. d) C.G. Overberger, N. Weinshenker and J.P. Anselme, J. Amer. Chem. Soc 86, 5364 (1964)CrossRefGoogle Scholar
  53. e) C.G. Overberger, N. Weinshenker and J.P. Anselme, J. Amer. Chem. Soc. 87, 4119 (1965)CrossRefGoogle Scholar
  54. 33.
    M. Schneider and H. Strohäcker, Tetrah. 32., 619 (1976)CrossRefGoogle Scholar
  55. 34.
    a) W.R. Roth and M. Martin, Tetrah, Let. 4695 (1967)Google Scholar
  56. b) W.R. Roth and M. Martin, Annalen 702, 1 (1967)CrossRefGoogle Scholar
  57. 35.
    T. Sasaki, S. Eguchi and F. Hibi, Chem. Comm, 227 (1974)Google Scholar
  58. 36.
    S. Inagaki and K. Fukui, Bull. Chem. Soc. Japan 45, 824 (1972)CrossRefGoogle Scholar
  59. 37.
    P.C. Hiberty, J. Amer. Chem. Soc, 97, 5975 (1975)CrossRefGoogle Scholar
  60. 38.
    P.C. Hiberty, J. Amer. Chem. Soc, 98, 6088 (1976)CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • Yves Jean
    • 1
  1. 1.Laboratoire de Chimie Organique PhysiqueUniversité Louis PasteurStrasbourg CedexFrance

Personalised recommendations