Advertisement

Kinetic Studies on Gas-Liquid Interface by Means of Capillary Wave Technique

  • T. Yasunaga
  • M. Sasaki
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 50)

Abstract

A general theory for the propagation characteristics of the capillary wave on gas-liquid interface, where the physco-chemical equilibrium exists, was proposed on the basis of the two-dimensional relaxation theory and the surface thermodynamics.

The frequency dependences of the propagation characteristics of the wave were measured in sodium dodecyl sulfate in order to confirm the validity of the derived equation. A relaxation was observed both in the propagation velocity and the damping coefficient of the wave. The results were well interpreted by the theoretical equations. From the concentration dependence of the relaxation parameters obtained, the relaxation was attributed to the adsorption-desorption reaction.

Keywords

Sodium Dodecyl Sulfate Propagation Velocity Surfactant Solution Relaxation Parameter Capillary Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dorrestein, Proc. Acad. Sci., B54, 260 (1950).Google Scholar
  2. 2.
    E. Mayer and J. D. Eliassen, J. Colloid Interface Sci., 37, 228 (1971).CrossRefGoogle Scholar
  3. 3.
    J. A. Mann and G. Du, J. Colloid Interface Sci., 37, 2 (1971).CrossRefGoogle Scholar
  4. 4.
    M. van den Tempel and R. P. van de Riet, J. Chem. Phys., 42, 2769 (1965).CrossRefGoogle Scholar
  5. 5.
    R. S. Hansen and J. A. Mann, J. Appl. Phys., 35, 152 (1964).CrossRefGoogle Scholar
  6. 6.
    J. Lucassen and R. S. Hansen, J. Colloid Interface Sci., 22, 32 (1966).CrossRefGoogle Scholar
  7. 7.
    J. T. Davies and R. W. Vose, Proc. R. Soc. London, Ser. A, 286, 218 (1965).CrossRefGoogle Scholar
  8. 8.
    M. Sasaki, T. Yasunaga, and N. Tatsumoto, Bull. Chem. Soc. Jpn., 50, 852 (1977).CrossRefGoogle Scholar
  9. 9.
    R. C. Brown, Proc. Phys. Soc. Lond., 48, 312 (1936).CrossRefGoogle Scholar
  10. 10.
    E. E. Dreger, G. I. Keim, and G. D. Miles, Ind. Eng. Chem., 36, 610 (1944).CrossRefGoogle Scholar
  11. 11.
    W. D. Harkins and R. W. Motton, J. Colloid Sei., 1, 106 (1946).Google Scholar
  12. 12.
    M. Muramatsu, K. Tajima, and T. Sasaki, Bull. Chem. Soc. Jpn., 41, 1279 (1968).CrossRefGoogle Scholar
  13. 13.
    K. Takeda, J. Sci. Hiroshima Univ. Ser. A, 40, 69 (1976).Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • T. Yasunaga
    • 1
  • M. Sasaki
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceHiroshima UniversityHiroshima, 730Japan

Personalised recommendations