Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 50))

Abstract

After a short description of the various methods of producing temperature jumps in aqueous solutions attention is focussed on the laser temperature jump techniques which have been built so far. It is shown that the iodine laser, which is described in this paper, having an emission wavelength of 1.315 μm, an energy output of 1–20 Joule, and characteristic pulse lengths of 2.4 μs or 3 ns is the most versatile arrangement for the direct heating of water. Its application in a T-jump experiment has already been realized and is described in this publication. The system was tested by investigating the dissociation-association reaction of water using a conductance bridge and the protonation-deprotonation reaction of the pH indicator dyes tropoeolin O and Phenolphthalein using a spectral photometric detection system. Due to the advantageous wavelength of the laser shock waves and different relaxation amplitudes inside the measuring cell could be completely avoided. Measurements at the same very short heating time over the complete conductivity range of water are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammes, G. G.: 1974 in “Techniques of Chemistry”, Vol. VI, Part II, A. Weissberger, Ed., Interscience, N. Y.

    Google Scholar 

  2. Caldin, E. F.,: 1975, Chem. Britain, 11, pp. 4

    Google Scholar 

  3. Pörschke, D.: 1976, Rev. Sci. Instrum. 47, pp. 1363

    Article  Google Scholar 

  4. Goodall, D. M., and Greenhow, R. C.: 1971, Chem. Phys. Lett., 9, pp. 583

    Article  CAS  Google Scholar 

  5. Ertl, G., and Gerischer, H.: 1961, Z. Elektrochem., Ber. Bunsenges. physik. Chem., 65, pp. 629

    CAS  Google Scholar 

  6. Strehlow, H., and Kalarickal, S. J.: 1966, Ber. Bunsenges. physik. Chem., 70, pp. 139

    CAS  Google Scholar 

  7. Smith, W. L., Liu, P., and Bloembergen, N.: 1977, Physical Review A, 15, pp. 2396

    Article  CAS  Google Scholar 

  8. Falk, M., and Ford, T. A.: 1966, Can. J. Chem., 44, pp. 1699

    Article  CAS  Google Scholar 

  9. Turner, D. H., Flynn, G. W., Sutin, N., and Beitz, J. V.: 1972, J. Am. Chem. Soc., 94, pp. 1554

    Article  CAS  Google Scholar 

  10. Flynn, G. W., and Sutin, N.: 1974, in “Chemical and Biochemical Applications of Lasers”, ed. C. B. Moore, Acad. Press, N. Y., pp. 309

    Google Scholar 

  11. Ameen, S., and De Maeyer, L.: 1975, J. Am. Chem. Soc, 97, pp. 1590

    Article  CAS  Google Scholar 

  12. Holzwarth, J. F., and Wolff, H.: 1975, Ber. Bunsenges. physik. Chem., 73, pp. 952

    Google Scholar 

  13. Maier, M.: 1976, Appl. Phys. 11, pp. 209

    Article  CAS  Google Scholar 

  14. Holzwarth, J. F., Schmidt, A., Wolff, H., and Volk, R.: 1977, J. Phys. Chem., 81, pp. 2300

    Article  CAS  Google Scholar 

  15. Kapser, J. V. V., and Pimentel, G. C.: 1964, Appl. Phys. Lett., 5, pp. 231

    Google Scholar 

  16. Frisch, W., Schmidt, A., Volk, R., and Holzwarth, J. F.: 1979, “Laser T-Jump Arrangement with Time Resolution in the Second to Picosecond Range”, this volume

    Google Scholar 

  17. Witte, K. J. Brederlow, G., Volk, R., et al.: 1978, in “High-Power Lasers and Applications”, ed. Kompa, K. L., and Walther, H., Springer Series in Optical Sciences, Springer-Verlag, Berlin, pp. 142

    Google Scholar 

  18. Rabl, C. R.: 1973, in Dechema-Monographie, Bd. 71, Technische Biochemie, “Relaxationsmeßtechnik”, Frankfurt

    Google Scholar 

  19. Barker, G. M., Fowles, P., Sammon, D. C., and Stringer, B.: 1970, Trans. Faraday Soc. 66, pp. 1498

    Article  CAS  Google Scholar 

  20. Eigen, M., and De Maeyer, L.: 1958, Proc. Roy. Soc. A 247, pp. 505

    Google Scholar 

  21. Goodall, D. M., Holzwarth, J. F., et al.: 1979, this volume, “Single-Photon Infrared Photochemistry”

    Google Scholar 

  22. Czerlinski, G., and Eigen, M.: 1959, Zeitschr. Elektrochem., Ber. Bunsenges. physik. Chem., 63, pp. 652

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 D. Reidel Publishing Company

About this paper

Cite this paper

Holzwarth, J.F. (1979). Laser Temperature Jump. In: Gettins, W.J., Wyn-Jones, E. (eds) Techniques and Applications of Fast Reactions in Solution. NATO Advanced Study Institutes Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9490-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9490-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9492-8

  • Online ISBN: 978-94-009-9490-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics