Equilibrium Studies on the Self-Association of Drugs in Aqueous Solution

  • David Attwood
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 50)


Equilibrium studies of aqueous solutions of amphiphilic drug molecules have indicated a dependency of the mode of association on the structure of the hydrophobic moiety. The association behaviour of drugs possessing diphenylmethane hydrophobic groups may be described using the mass action theory of micellization. In contrast, some drugs with tricyclic hydrophobic moieties exhibit continuous association with no apparent critical micelle concentration. The association behaviour of these drugs may be described by a stepwise association model. Apparent nonmicellar association is observed with maleate salts of amphiphilic drugs containing pyridine rings. Relaxation studies have revealed an interionic proton transfer process in such systems.


Hydrophobic Moiety Association Behaviour Sodium Maleate Propantheline Bromide Diphenhydramine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Florence, A.T.: 1968, Adv. Colloid Interface Sci. 2, pp. 115–149.CrossRefGoogle Scholar
  2. (2).
    Attwood, D.: 1972, J. Pharm. Pharmac. 24, pp. 751–752.CrossRefGoogle Scholar
  3. (3).
    Attwood, D.: 1976, J. Pharm. Pharmac., 28, pp. 407–409.CrossRefGoogle Scholar
  4. (4).
    Attwood, D. and Udeala, O.K.: 1975, J. Phys. Chem. 79, pp. 889–892.CrossRefGoogle Scholar
  5. (5).
    Mukerjee, P.: 1974, J. Pharm. Sci. 63, pp. 972–981.CrossRefGoogle Scholar
  6. (6).
    Attwood, D. and Udeala, O.K.: 1974, J. Pharm. Pharmac. 26, pp. 854–860.CrossRefGoogle Scholar
  7. (7).
    Attwood, D. and Udeala, O.K.: 1974, J. Pharm. Pharmac., 27, pp. 395–399.Google Scholar
  8. (8).
    Scholtan, W.: 1955, Kolloid Ζ — Ζ. Polym., 142, pp. 84–104.Google Scholar
  9. (9).
    Attwood, D., Florence, A.T. and Gillan, J.M.N.: 1974, J. Pharm. Sci., 63, pp. 988–993.CrossRefGoogle Scholar
  10. (10).
    Florence, A.T. and Parfitt, R.T.: 1970, J. Pharm. Pharmac, 22, pp. 121S–125S.CrossRefGoogle Scholar
  11. (11).
    Florence, A.T. and Parfitt, R.T.: 1971, J. Phys. Chem., 75, pp. 3554–3560.CrossRefGoogle Scholar
  12. (12).
    Attwood, D. and Gibson, J.: 1978, J. Pharm. Pharmac, 30, pp. 176–180.CrossRefGoogle Scholar
  13. (13).
    Attwood, D.: 1976, J. Phys. Chem., 80, pp. 1984–1987.CrossRefGoogle Scholar
  14. (14).
    Adams, E.T. and Williams, J.W.: 1964, J. Am. Chem. Soc., 86, pp. 3454–3461.CrossRefGoogle Scholar
  15. (15).
    Steiner, R.F.: 1952, Arch. Biochem. Biophys., 39, pp. 333–354.CrossRefGoogle Scholar
  16. (16).
    Attwood, D.; 1976, J. Pharm. Pharmac.28 pp. 762–765.CrossRefGoogle Scholar
  17. (17).
    Attwood, D. and Udeala, O.K.: 1976, J. Pharm. Sci., 65, pp. 1053–1057.CrossRefGoogle Scholar
  18. (18).
    Gettins, J., Greenwood, R., Rassing, J.E. and Wyn-Jones, E.: 1976, J.C.S. Chem. Coram., pp. 1030–1031.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • David Attwood
    • 1
  1. 1.Pharmacy DepartmentUniversity of ManchesterManchesterUK

Personalised recommendations