NMR-Spectroscopy of Organometallic Compounds of the f-Elements: Practical Applications

  • R. Dieter Fischer
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 44)


The purpose of this contribution is not to present a complete compilation of all nmr data and corresponding experimental results that have been obtained with organometallic nfqsystems until now; it is rather intended to indicate the specific fields of activity in correlating data with distinct problems confined to the molecular and/or electronic structure of a paramagnetic complex. From the point of view of the reviewer, it appears particularly worthwhile to trace the various routes that have been demonstrated to be practicable so far, and to point out what still could, and should, be done to make optimal use of the fairly well developed theory of the nmr-spectra of paramagnetic samples.


Spin Density Geometric Factor Ring Proton Isotropic Shift Shift Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    a) D.F. Evans, J. Chem. Soc. ( London ), 1959, p. 2003Google Scholar
  2. (b).
    concerning the adaptation of Evan’s method on organo-metallic complexes, see H.P. Fritz and K.E. Schwarzhans, J. Organomet. Chem. 1, 208 (1964)Google Scholar
  3. 2.
    H. Fischer, Dissertation, Technische Hochschule München, 1965Google Scholar
  4. 3.
    NMR of Paramagnetic Molecules, G.N. LaMar, W.deW. Horrocks, Jr. and R.H. Holm, Eds., Academic Press, New York and London, 1973Google Scholar
  5. 4.
    a) R. von Ammon and R.D. Fischer, Angew. Chem., Int. Ed. 11, 675(1972)CrossRefGoogle Scholar
  6. (b).
    W.deW. Horrocks, Jr., Loc. cit.3, Chap. 12, p 479Google Scholar
  7. c) “Nuclear Magnetic Resonance Shift Reagents”, R.E. Sievers, Ed., Academic Press, New York, 1973;Google Scholar
  8. d) K.A. Kime and R.E. Sievers, Aldrichimica Acta 10, No. 4, p. 54(1977), and further references thereinGoogle Scholar
  9. 5.
    See footnote on p. 137 of ref. 3Google Scholar
  10. 6.
    A very comprehensive description of the internal magnetic field, and of the derivation of eqns. 3 and 4 is presented in ref. 56Google Scholar
  11. 7.
    See ref. 3, pp. 72 and 128Google Scholar
  12. 8.
    W.deW. Horrocks, Jr. and J.P. Sipe, III, J. Amer. Chem. Soc. 93, 6800 (1971)CrossRefGoogle Scholar
  13. 9.
    L. Tomie, Z. Majerski, M. Tomie and D.E. Sunko, Croat. Chem. Acta 43, 267 (1971)Google Scholar
  14. 10.
    See also ref. 3, p. 529 (table 13-II)Google Scholar
  15. 11.
    R. von Ammon, B. Kanellakopulos, R.D. Fischer and P. Laubereau, Inorg. Nucl. Chem. Lett. 5, 315(1969); R.D. Fischer and G. Bielang, unpublished dataGoogle Scholar
  16. 12.
    a) R.D. Ernst, W.J. Kennelly, C.S. Day, V.W. Day and T.J. Marks, J. Amer. Chem. Soc., in pressGoogle Scholar
  17. (b).
    K.W. Bagnall and J. Edwards, J. Organomet. Chem. 80, C14 (1974)Google Scholar
  18. 13.
    P. Zanella, G. de Paoli and G. Bombieri, J. Orgànomet. Chem. 142, C21 (1977)Google Scholar
  19. 14.
    J.D. Jamerson and J. Takats, J. Organomet. Chem. 78, C23 (1974)Google Scholar
  20. 15.
    J.M. Manriquez, P.J. Fagan and T.J. Marks, J. Amer. Chem. Soc. 100, 3939 (1978)Google Scholar
  21. 16.
    R.D. Fischer, R. von Fischerand B. Kanellakopulos, J. Organo-met. Chem. 25, 123 (1970)CrossRefGoogle Scholar
  22. 17.
    R. von Ammon, B. Kanellakopulos and R.D. Fischer, Abstr. Int. Symp. on NMR Spectroscopy, Birmingham, 1969Google Scholar
  23. 18.
    R.R. Ryan, R.A. Penneman and B. Kanellakopulos, J. Amer. Chem. Soc. 97, 4258 (1975)CrossRefGoogle Scholar
  24. 19.
    R.D. Fischer, E. Klähne and J. Kopf, Z. Naturf. 33b (1978), in pressGoogle Scholar
  25. 20.
    R.D. Fischer and G.R. Sienel, Z. anorg. allg. Chem. 419, 126 (1976)CrossRefGoogle Scholar
  26. 21.
    L.T. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem. 2, 246 (1956)CrossRefGoogle Scholar
  27. 22.
    R. von Ammon, personal communicationGoogle Scholar
  28. 23.
    B. Kanellakopulos, personal communicationGoogle Scholar
  29. 24.
    H. Marquet-Ellis and G. Filcher, J. Organomet. Chem. 131, 257 (1977)CrossRefGoogle Scholar
  30. 25.
    It has been known for long that also direct reaction of UC13 with NaC5H5 in THE may yield (C5H5)3U0(n-C4H9). G.L. Ter Haar and M. Dubeck, Inorg. Chem. 3, 1648 (1964)Google Scholar
  31. 26.
    B. Kanellakopulos, E.O. Fischer, E. Dornberger and F. Baumgärtner, J. Organomet. Chem. 24, 507 (1970);Google Scholar
  32. H-nmr studies of (C5H5)3U(III) complexes have been carried out by R. von Ammon(22)Google Scholar
  33. 27.
    V.K. Vasil’ev, V.N. Sokolov and G.P. Kondratenkov, J. Organomet. Chem. 142, C7 (1977)CrossRefGoogle Scholar
  34. 28.
    A. Greco, B. Bertolini and S. Cesca, Inorg. Chim. Acta, 21, 245 (1977)CrossRefGoogle Scholar
  35. 29.
    A.E. Crease and P. Legzdins, J. Chem. Soc.(Dalton) 1973, p. 1501Google Scholar
  36. 30.
    T.J. Marks and A.M. Seyam, J. Organomet. Chem. 67, 61 (1974)CrossRefGoogle Scholar
  37. 31.
    N. Palladino, G. Lugli, U. Pedretti, M. Brunelli and G. Giacometti, Chem. Phys. Lett. 5, 15 (1970)CrossRefGoogle Scholar
  38. 32.
    a) M. Brunelli, G. Lugli and G. Giacometti, J. Mag. Res. 9, 247 (1973)Google Scholar
  39. (b).
    S. Poggio, M. Brunelli, U. Pedretti and G. Lugli, Abstr. Contrib. Sem., NATO ASI on “Organometallics of the f-Elements”, Sogesta/Urbino, Sept. 11–22, 1978;Google Scholar
  40. c) M. Brunelli, G. Perego, G. Lugli and A. Mazzei, J. Chem. Soc., Dalton Trans., in pressGoogle Scholar
  41. 33.
    T.J. Marks and J.R. Kolb, Chem. Communic. 1972, p. 1019Google Scholar
  42. 34.
    T.J. Marks and J. R. Kolb, J. Amer. Chem. Soc. 97, 27 (1975)Google Scholar
  43. 35.
    Otherwise, the study of the hydrogen exchange would be complicated by the “thermal decoupling” of the nuclei 41 and 11B via 11B-quadrupolar relaxation. See, e.g. R. von Ammon, B. Kanellakopulos, G. Schmid and R.D. Fischer, J. Organomet. Chem. 25, Cl (1970)Google Scholar
  44. 36.
    T.J. Marks, W.J. Kennelly, J.R. Kolb and L.A. Shimp, Inorg. Chem. 11, 2540(1972), and references thereinGoogle Scholar
  45. 37.
    T.J. Marks and W.J. Kennelly, J. Amer. Chem. Soc. 97, 1439 (1975)CrossRefGoogle Scholar
  46. 38.
    T.J. Marks and J.R. Kolb, J. Amer. Chem. Soc. 97, 3397(1975); see also: T.J. Marks and J.R. Kolb, Chem. Rev. 77, 263 (1977)Google Scholar
  47. 39.
    R.D. Fischer and E.J. Mayer, unpublished resultsGoogle Scholar
  48. 40.
    T.J. Marks, A.M. Seyam and J.R. Kolb, J. Amer. Chem. Soc. 95, 5529 (1973)Google Scholar
  49. 41.
    T.J. Marks and W.A. Wachter, J. Amer. Chem. Soc. 98, 703 (1976)CrossRefGoogle Scholar
  50. 42.
    R. von Ammon, B. Kanellakopulos and R.D. Fischer, Chem. Phys. Lett. 2, 513(1968); ibid. 4, 553 (1970)CrossRefGoogle Scholar
  51. 43.
    R. von Ammon, R.D. Fischer and B. Kanellakopulos, Chem. Ber. 104, 1072 (1971)CrossRefGoogle Scholar
  52. 44.
    R. von Ammon and B. Kanellakopulos, Ber. Bunsenges. Phys. Chem. 76, 995 (1972)Google Scholar
  53. 45.
    R. von Ammon, B. Kanellakopulos, R.D. Fischer and V. Formacek, Z. Naturf. 28b, 200 (1973)Google Scholar
  54. 46.
    J. H. Burns and W.H. Baldwin, J. Organomet. Chem. 120, 361 (1976)CrossRefGoogle Scholar
  55. 47.
    W. Wagner, Dissertation, Universität Heidelberg, 1974Google Scholar
  56. 48.
    R. von Ammon, B. Kanellakopulos and R.D. Fischer, Radiochim. Acta 11, 162 (1969)Google Scholar
  57. 49.
    R. von Ammon, R.D. Fischer and B. Kanellakopulos, Chem. Ber. 105, 45 (1972)CrossRefGoogle Scholar
  58. 50.
    A.W. Spiegl, Dissertation, Universität Erlangen-Nürnberg, 1978; R.D. Fischer and A.W. Spiegl, to be publishedGoogle Scholar
  59. 51.
    C.A. Harmon, D.P. Bauer, S.R. Berryhill, K. Hagiwara and A. Streitwieser, Jr., Inorg. Chem. 16, 2143(1977), and further references thereinGoogle Scholar
  60. 52.
    J. Sandström and J. Seita, Acta Chem. Scand. B31, 86 (1977)CrossRefGoogle Scholar
  61. 53.
    W.B. Jennings, Chem. Rev. 75, 307 (1975)CrossRefGoogle Scholar
  62. 54.
    D.F. Evans and G.C. de Villardi, J. Chem. Soc. ( Dalton ), 1977, p. 2256Google Scholar
  63. 55.
    W.B. Lewis, J.A. Jackson, J.F. Lemons and H. Taube, J. Chem. Phys. 36, 694 (1962)CrossRefGoogle Scholar
  64. 56.
    B. Bleaney, J. Mag. Resonance 8, 91 (1972)Google Scholar
  65. 57.
    B. Bleaney, C.M. Dobson, B.A. Levine, R.B. Martin, R.J.P. Williams and A.V. Xavier, Chem. Comm. 1972, p. 791Google Scholar
  66. 58.
    K.O. Hodgson, F. Mares, D.F. Starks and A. Streitwieser, Jr., J. Amer. Chem. Soc. 95, 8650 (1973)CrossRefGoogle Scholar
  67. 59.
    R.E. Maginn, S. Manastyrskyj and M. Dubeck, J. Amer. Chem. Soc. 85, 672 (1963)CrossRefGoogle Scholar
  68. 60.
    J.D. Jamerson, A.P. Masino and J. Takats, J. Organomet. Chem. 65, C33 (1974); A.P. Masino, Ph.D. Thesis, University of Alberta ( Edmonton, Canada ), 1978Google Scholar
  69. 61.
    H.M. McConnell, J. Chem. Phys. 24, 764 (1956); H.M. McConnell and D.B. Chesnut, J. Chem. Phys.. 28, 107 (1958)CrossRefGoogle Scholar
  70. 62.
    Note that in Bleaney’s paper(56) the sign of AH/Ho is opposed to that of AHlso as applied throughout this ChapterGoogle Scholar
  71. 63.
    J.A. Pople and D.L. Beveridge, “Approximate Molecular Orbital Theory”, McGraw Hill, New York, 1970, p$180; J.A. Pople, D.L. Beveridge and P.A. Dobosh, J. Chem. Phys. 47, 20–26 (1967)Google Scholar
  72. 64.
    G.R. Sienel, Dissertation, University of Erlangen-Nürnberg (Germany), 1976; R.D. Fischer and G.R. Sienel, to be publishedGoogle Scholar
  73. 65.
    J.H. Burns, J. Organomet. Chem. 69, 225 (1974)CrossRefGoogle Scholar
  74. 66.
    H.-D. Amberger, R.D. Fischer and B. Kanellakopulos, Z. Naturf. 31b, 12(1976)Google Scholar
  75. H.-D. Amberger, J. Organomet. Chem. 110, 59 (1976)CrossRefGoogle Scholar
  76. 67.
    H.-D. Amberger, R.D. Fischer and B. Kanellakopulos, Z. Naturf. 31b, 12(1976); H.-D. Amberger, J. Organomet. Chem. 110, 59 (1976)CrossRefGoogle Scholar
  77. 68.
    N. Edelstein, G.N. LaMar, F. Mares and A. Streitwieser, Jr., Chem. Phys. Letters 8, 399 (1971)CrossRefGoogle Scholar
  78. 69.
    A. Streitwieser, Jr., D. Dempf, G.N. LaMar, D.F. Karraker and N. Edelstein, J. Amer. Chem. Soc. 93, 7343 (1971)CrossRefGoogle Scholar
  79. 70.
    D.G. Karraker, J.A. Stone, E.R. Jones and N. Edelstein, J. Amer. Chem. Soc. 92, 4841 (1970)CrossRefGoogle Scholar
  80. 71.
    A. Avdeef, K. N. Raymond, K.O. Hodgson and A. Zalkin, Inorg. Chem. 11, 1083(1972)CrossRefGoogle Scholar
  81. )K.O. Hodgson and K.N. Raymond, Inorg. Chem. 12, 458 (1973)CrossRefGoogle Scholar
  82. 72.
    S.E. Anderson and R. Rai, Chem. Phys. 2, 216 (1973)CrossRefGoogle Scholar
  83. 73.
    R. von Ammon, B. Kanellakopulos, E. Dornberger and R.D. Fischer, unpublished resultsGoogle Scholar
  84. 74.
    C. Aderhold, Dissertation, University of Heidelberg, 1975Google Scholar
  85. 75.
    R.J. Kurland and B.R. McGarvey, J. Magn. Reson. 2, 286 (1970)Google Scholar
  86. 76.
    B.R. McGarvey, J. Chem. Phys. 65, 955 (1976); see also the Chapter by B.R. McGarvey in this BookGoogle Scholar
  87. 77.
    P. Fantucci, P. Balzarini and V. Valenti, Inorg. Chim. Acta, 25, 113 (1977)CrossRefGoogle Scholar
  88. 78.
    H. Schumann and S. Hohmann, Chem. Z. 100, 336 (1976)Google Scholar
  89. 79.
    For further systems displaying unusual T1B nmr shifts see e.g. G.R. Eaton and W.N. Lipscomb, NMR-Studies of Boron Hydrides and Related Compounds, W.A. Benjamin Inc. New York and Amsterdam, 1969Google Scholar
  90. 80.
    B. Stutte and G. Schmid, J. Organomet. Chem. 155, 203 (1978)CrossRefGoogle Scholar
  91. 81.
    H.-D. Araberger, private communicationGoogle Scholar
  92. 82.
    According to more recent experience with nn-coordinated cyclic 7-electron systems CnHn (see, e.g., ref. 77), the evaluation of the free spin density on C5H5 as given in ref. 42 definitely deserves a revised viewGoogle Scholar
  93. 83.
    Most recent calculations (simultaneous diagonalization of the total fq-configurations) carried out at Argonne National Laboratory have confirmed the Jz-sequence: ±3 < ±2 < 0 « ±1, ±4 for uranocene, and suggest strongly that Jz of the ground state of neptunocene is either ±5/2 or ±7/2, but not ±9/2 (W.T. Carnall, personal communication)Google Scholar
  94. 84.
    Cf. B.R. McGarvey and R.J. Kurland in Ref. 3, p. 559 (table 14-I)Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1979

Authors and Affiliations

  • R. Dieter Fischer
    • 1
  1. 1.Institut für Anorganische und Angewandte ChemieUniversität HamburgHamburg 13Germany

Personalised recommendations