Simultaneous Interpolation and Approximation

  • R. Gervais
  • Q. I. Rahman
  • G. Schmeisser
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 49)


Given the values of a function and possibly the values of some of its derivatives, at certain points, a practical problem of numerical analysis is to use this information to construct other functions which approximate it. Simultaneous interpolation and approximation of continuous functions on a compact interval, by polynomials, has been extensively studied by Runge, Bernstein, Faber, Fejer, Turan and others. Here we study simultaneous interpolation and approximation of a function f on the whole real line by entire functions of exponential type. The function f is supposed to be uniformly continuous and bounded on (-∞,∞).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Balâsz and P. Turân, Notes on interpolation. Ill (Convergence), Acta Math. Acad. Sci. Hung., vol. 9 (1958), pp. 195–214.CrossRefGoogle Scholar
  2. 2.
    S.N. Bernstein, Sur 11 ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné, Mémoires de l’Académie Royale de Belgique, (2), vol. 4 (1912), pp. 1–103.Google Scholar
  3. 3.
    S.N. Bernstein, Sur la limitation des valeurs d’un polynome Pn(x) de degré n sur tout un segment par ses valeurs en (n+1) points du segmenty Izv. Akad. Nauk SSSR. Ser. Mat., vol. 8 (1931), pp. 1025–1050.Google Scholar
  4. 4.
    S.N. Bernstein, Sur la meilleure approximation sur tout I’axe réel des fonctions continues par des fonctions entières de degré fini. I, C.R. (Doklady) Acad. Sei. URSS (N.S.), vol. 51 (1946), pp. 331–334.Google Scholar
  5. 5.
    R.P. Boas, Jr., Entire functions, Academic Press, New York, 1954.zbMATHGoogle Scholar
  6. 6.
    T. Carleman, Sur un theorème de Weierstrass, Ark. Mat. Astr. Fys., vol. 20B, No. 4 (1927).Google Scholar
  7. 7.
    F. Carlson, Sur une classe de série de Taylor, Thesis, Upsala, 1914.Google Scholar
  8. 8.
    G. Faber, Uber die interpolatorische Darstellung stetiger Funktionen, Jber. Deutsch. Math. Verein., vol. 23 (1914), pp. 192–210.zbMATHGoogle Scholar
  9. 9.
    L. Fejer, Die Abschätzung eines Polynoms in einem Intervalle, wen Schranken für seine Werte und ersten Ableitungswerte in einzelnen Punkten des Intervalles gegeben sind, und ihre Anwendung auf die Konvergenz fr age Eermitescher Interpolationsreihen, Math. Z., vol. 32 (1930), pp. 426–457.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    R. Gervais and Q.I. Rahman, An extension of Carlson’s theorem for entire functions of exponential type, Trans. Amer. Math. Soc., vol. 235 (1978), pp. 387–394.zbMATHMathSciNetGoogle Scholar
  11. 11.
    R. Gervais and Q.I. Rahman, An extension of Carlson’s theorem for entire functions of exponential type. II, Journal of Mathematical Analysis and Applications (to appear).Google Scholar
  12. 12.
    O. Kis, Notes on interpolation (Russian), Acta Math. Acad. Sei. Hung., vol. 11 (1960), pp. 49–64.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J. Marcinkiewicz, Sur la divergence des polynomes d’interpolation, Acta Litt. Sei. Szeged, vol. 8 (1936/37), pp. 131–135.Google Scholar
  14. 14.
    W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, New York, 1966.zbMATHGoogle Scholar
  15. 15.
    C. Runge, Uber empirische Funktionen und die Interpolation zwischen äquidistanten Ordinateny Zeitschrift für Mathematik und Physik, vol. 46 (1901), pp. 224–243.zbMATHGoogle Scholar
  16. 16.
    A.F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press Inc., New York, 1963.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1979

Authors and Affiliations

  • R. Gervais
  • Q. I. Rahman
  • G. Schmeisser

There are no affiliations available

Personalised recommendations