Advertisement

Inequalities of Markoff and Bernstein

  • Q. I. Rahman
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 49)

Abstract

In the early part of this century, de la Vallée Poussin raised the following question of best approximation: Is it possible to approximate every polygonal line by polynomials of degree n with an error of o(l/n) as n becomes large? The question was answered in the negative by S. Bernstein. For this he proved and made considerable use of an inequality concerning the derivatives of polynomials. This inequality and a related (and earlier) one by A.A. Markoff have been the starting point of a considerable literature. Here we discuss some of the investigations which have centered about these inequalities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.N. Bernstein, Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné, Mémoire de l’Academie Royale de Belgique, (2), vol. 4 (1912), pp. 1–103.Google Scholar
  2. 2.
    S.N. Bernstein, Sur une propriété des fonctions entières, Comptes Rendus de l’Académie des Sciences, Paris, vol. 176 (1923), pp. 1603–1605.zbMATHGoogle Scholar
  3. 3.
    R.P. Boas, Jr., Entire functions, Academic Press, New York, 1954.zbMATHGoogle Scholar
  4. 4.
    R.P. Boas, Jr., Inequalities for asymmetric entire functions, Illinois J. Math., vol. 1 (1957), pp. 94–97.zbMATHMathSciNetGoogle Scholar
  5. 5.
    N.G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. We tens ch., Proc. vol. 50 (1947), pp. 1265–1272 = Indag. Math., vol. 9 (1947), pp. 591–598.Google Scholar
  6. 6.
    R.J. Duffin and A. C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc., vol. 50 (1941), pp. 517–528.CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Giroux and Q.I. Rahman, Inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc., vol. 193 (1974), pp. 67–98.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Giroux, Q.I. Rahman and G. Schmeisser, On Bernstein’s inequality, Canadian J. Math, (to appear).Google Scholar
  9. 9.
    P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., vol. 50 (1944), pp. 509–513.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    B.Ya. Levin, On a special class of entire functions and on related extremal properties of entire functions of finite degree, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 14 (1950), pp. 45–84.zbMATHGoogle Scholar
  11. 11.
    M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., vol. 1 (1969), pp. 57–60.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    A.A. Markoff, Sur une question posée par Mendeleieff, Bulletin of the Academy of Sciences of St. Petersburg, vol. 62 (1889), pp. 1–24.Google Scholar
  13. 13.
    W.A. Markoff, Über Polynome die in einen gegebenen Intervalle möglichst wenig von Null abweichen, Math. Annalen, vol. 77 (1916), pp. 213–258.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    D.J. Newman, Derivative bounds for Müntz polynomials, J. Approx. Theory, vol. 18 (1976), pp. 360–362.CrossRefzbMATHGoogle Scholar
  15. 15.
    R. Pierre and Q.I. Rahman, On a problem of Turan about polynomials, Proc. Amer. Math. Soc., vol. 56 (1976), pp. 231 - 238.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    R. Pierre, Sur les polynômes dont le graphe sur [-1,+1] se trouve dans une region convexe donnee, Ph.D. thesis, Université de Montréal, 1977.Google Scholar
  17. 17.
    C. Pommerenke, On the derivative of a polynomial. Mich. Math. J., vol. 6 (1969), pp. 373–375.MathSciNetGoogle Scholar
  18. 18.
    Q.I. Rahman, On a problem of Turán about polynomials with curved majorants, Trans. Amer. Math. Soc., vol. 163 (1972), pp. 447–455.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Q.I. Rahman, On asymmetric entire functions. II, Math. Annalen, vol. 167 (1966), pp. 49–52.CrossRefzbMATHGoogle Scholar
  20. 20.
    W.E. Sewell, On the polynomial derivative constant for an ellipse, Amer. Math. Monthly, vol. 44 (1937), pp. 577–578.CrossRefMathSciNetGoogle Scholar
  21. 21.
    G. Szegö, Über einen Satz von A. Markoff, Math. Z., vol. 23 (1925), pp. 46–61.CrossRefGoogle Scholar
  22. 22.
    P. Turan, Über die Ableitung von Polynomen, Compositio Math., vol. 7 (1939–40), pp. 89–95.MathSciNetGoogle Scholar
  23. 23.
    A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., (2), vol. 34 (1932), pp. 392–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1979

Authors and Affiliations

  • Q. I. Rahman
    • 1
  1. 1.Department of MathematicsUniversity of MontrealMontrealCanada

Personalised recommendations