Planetary Motion, Sunspots and Climate

  • H. T. Mörth
  • L. Schlamminger


Past attempts to link sunspots with the gravitational attraction by planets or with the orbital motion of the Sun have not been successful. In this paper the changes in orbital angular momenta of planets due to gravitational perturbation are considered. Ninety-eight percent of the angular momentum of the solar system is contained in the orbital motion of the four giant planets Jupiter, Saturn, Uranus, and Neptune. The potential relevance of the motion of these giant planets to the sunspot variations is investigated. The perturbation forces between two planets vary periodically over their mutual synodic period and show symmetry about heliocentric conjunction and opposition. Certain pairs and pair groupings in the giant planets have highly commensurable mean motions. Their synodic half periods correspond to the principal sunspot number frequencies. In particular, the 10 yr period appears to be associated with the relative motion of the pair Jupiter — Saturn, the 90 yr period with that of Uranus and Neptune, and the 11 yr period with the motion of the pair Jupiter — Saturn relative to the pair Uranus — Neptune. The physical link between planetary motion and sunspots is seen in the outward transfer of angular momentum from the Sun to the fringe of the solar system. We assume the existence of a basic energy flow from the Sun outward effected by accelerations of outer planets through gravitational perturbation by inner planets rhythmically modulated by the orbital configurations of all the planets. The transmission of gravitational torque in the solar system is assumed to cause changes in the global and local vorticity patterns of low inertia materials such as the solar photosphere and the terrestrial atmosphere; this provides a mechanism of control on the terrestrial atmospheric circulation and climate by extraterrestrial forces either directly or through modulation of solar activity.


Solar System Sunspot Number Orbital Angular Momentum Giant Planet Angular Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Smythe and J. A. Eddy, Nature, 266, 1977.Google Scholar
  2. 2.
    R. E. Roy and M. W. Ovenden, Mon. Not. Roy. Astr. Soc., 114, 232, 1954.Google Scholar
  3. 3.
    L. Schlamminger, Sunspot periods show a synchronization with the resonance periods and the perturbation periods of planets (unpublished), 1977.Google Scholar
  4. 4.
    T. J. Cohen and P. R. Lintz, Nature, 250, 398, 1974.CrossRefGoogle Scholar
  5. 5.
    K. Sukurai, Nature, 269, 402, 1977.CrossRefGoogle Scholar
  6. 6.
    J. A. Eddy, P. A. Gilman, and D. E. Trotter, Solar Phys., 46, 3, 1976.CrossRefGoogle Scholar
  7. 7.
    W. Gleissberg, Sterne und Weltraum, 7–8, 229, 1977.Google Scholar
  8. 1859 Wolf, R,; Compt Rend. Acad. Sci. Paris; Vol. 48, p. 231.Google Scholar
  9. 1872 De la Rue, W., Stewart, B., Loewy, B.; Proc. Roy. Soc. London; Vol. 20. pp. 210–218.Google Scholar
  10. 1899 Birkeland, Kr.; Recherches sur les taches du soleil et leur origine; Skrift. Vidensk., Vol. 1, Christiania.Google Scholar
  11. 1900 Brown, E. W.; A possible explanation of the sunspot period; Monthly Notices, Royal Astron. Society, Vol. 60, p. 599–606.Google Scholar
  12. 1911 Schuster, A,; The influence of the planets on the formation of sun- spots; Proc. Roy. Soc. London; Vol. 85, p. 309–323.CrossRefGoogle Scholar
  13. 1918 Pocock, R. J.; Monthly Notices, Roy. Astr. Soc. London; Vol. 79, p. 54.Google Scholar
  14. 1936 Sanford, F.; Smiths. Misc. Coll., Vol. 95, 11 pp.Google Scholar
  15. 1937 Stetson, H. T.; Sunspots and their effects; McGraw Hill, 1937.Google Scholar
  16. 1946 Johnson, M.; Correlations of cycles in weather, solar activity, geomagnetic values and planetary configurations; Phillips and Van Orden, San Francisco.Google Scholar
  17. 1947 Clayton, H. H.; Solar cycles; Smiths. Misc. Coll., Vol. 106, No. 22.Google Scholar
  18. 1954 Anderson, C. N.; Geophys. Res.; Vol. 59, p. 455CrossRefGoogle Scholar
  19. 1954 Nelson, J.; Transactions, Inst. Rad. Eng.; CS-2, p. 19.Google Scholar
  20. 1962 Suda, T.; J. Met. Soc. Japan; 40, p. 278.Google Scholar
  21. 1965 Jose, P.; Astron. Journ. 70, p. 193–200.CrossRefGoogle Scholar
  22. 1965 Ward, F. I.; Astrophys. Journ., 141, p. 534.CrossRefGoogle Scholar
  23. 1965 Wood, K. D., Wood, R. M.; Nature, Vol. 208, p. 129–131.CrossRefGoogle Scholar
  24. 1966 Trellis, M.; CR Acad. Sci., B, 262, p. 312.Google Scholar
  25. 1967 Takahashi, K.; Rad. Res. Lab.; Vol. 14, p. 237.Google Scholar
  26. 1967 Bigg, E. K.; Astr. Journal; Vol. 72, p. 463–466.CrossRefGoogle Scholar
  27. 1968 Bollinger, C. J.; Tellus XX, 3, p. 412–416.CrossRefGoogle Scholar
  28. 1969 Nickel, G. H.; Rep. Lawrence Radiation Lab., URCL - 502264.Google Scholar
  29. 1970 Bureau, R. A., Craine, L. B.; Nature, 228, p. 984CrossRefGoogle Scholar
  30. 1972 Wood, K. D.; Nature, 240, p. 91–93.CrossRefGoogle Scholar
  31. 1972 Sleeper, H. P. Jr.; Planetary resonances, bistable oscillation modes and solar activity cycles; NASA Contractor Report 2035, prepared by Northrop Services Inc., Huntsville, Alabama.Google Scholar
  32. 1975 Okal, E., Anderson, E. L.; Nature, 255, p. 511.CrossRefGoogle Scholar
  33. 1977 Smythe, C. M., Eddy, J. A.; Nature, 266, p. 435.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1979

Authors and Affiliations

  • H. T. Mörth
    • 1
  • L. Schlamminger
    • 2
  1. 1.Climatic Research UnitUniversity of East AngliaNorwichUK
  2. 2.F. S. Astronomical ObservatoryErlangenFederal Republic of Germany

Personalised recommendations