Conformational Analysis of Snake Toxins by Laser Raman Spectroscopy

  • Anthony T. Tu
Part of the Nato Advanced Study Institutes Series book series (ASIC, volume 43)

Abstract

Conformations of snake toxins, neurotoxins and hemorrhagic toxin were analyzed by laser Raman spectroscopy. All sea snake neurotoxins consist of antiparallel β-sheet and β-reverse turn structures. Hemorrhagic toxin e isolated from western diamondback rattlesnake is a zinc dependent protease. Judging from the Raman spectra, hemorrhagic toxin e consists of some α-helix with a high degree of random coil or β-reverse turn structure. All these toxins have gauche-gauche-gauche conformation of C-C-S-S-C-C according to S-S stretching vibration frequency. The tyrosine residue of most sea snake neurotoxins is buried as I830 is stronger than I850. From the 1361 cm−1 band, it is concluded that the tryptopnan residue of neurotoxins is exposed to the outside of the molecule.

Keywords

Zinc Benzene Tyrosine Amide Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Tu, Ann. Rev. Biochemistry 42, 235 (1973).CrossRefGoogle Scholar
  2. 2.
    A. T. Tu, Venoms: Chemistry and Molecular Biology, John Wiley, New York, 560 pages (1977).Google Scholar
  3. 3.
    J. W. Fox, M. Elzinger, and A. T. Tu, FEBS Lett. 80, 217 (1977).CrossRefGoogle Scholar
  4. 4.
    B. G. Frushour and S. L. König, Adv. Infrared and Raman Spectroscopy 1, 35 (1975).Google Scholar
  5. 5.
    T. G. Spiro and B. P. Gaber, Ann. Rev. Biochem. 46, 553 (1977).CrossRefGoogle Scholar
  6. 6.
    A. T. Tu, J. B. Bjarnason, and V. J. Hruby, Biochim. Biophys. Acta 533, 530 (1978).Google Scholar
  7. 7.
    V. J. Hruby, K. K. Deb, J. Fox, J. Bjarnason, and A. T. Tu, J. Biol. Chem., in press (1978).Google Scholar
  8. 8.
    P. Y. Chou and G. D. Fasman, Biochemistry 13, 222 (1974).CrossRefGoogle Scholar
  9. 9.
    J. L. Lippert, D. Tyminski, and P. J. Deesmeules, J. Am. Chem. Soc. 98, 7075 (1976).CrossRefGoogle Scholar
  10. 10.
    M. Pezolet, M. Pigeon-Gosselin, and L. Coulombe, Biochim. Biophys. Acta, 453, 502 (1976).Google Scholar
  11. 11.
    Y. H. Chen, J. T. Yang, and K. H. Chan, Biochemistry 13, 3350 (1974).CrossRefGoogle Scholar
  12. 12.
    A. T. Tu, B. H. Jo and N. T. Yu, Int. J. Peptide Prot. Res. 8, 337 (1976).CrossRefGoogle Scholar
  13. 13.
    N. T. Yu, T. S. Lin, and A. T. Tu, J. Biol. Chem. 250, 1782 (1975).Google Scholar
  14. 14.
    H. Sugeta, A. Go, and T. Miyazawa, Bull. Chem. Soc. 46, 3407 (1973).CrossRefGoogle Scholar
  15. 15.
    N. T. Yu, B. H. Jo, and D. C. O’Shea, Arch. Biochem. Biophys. 156, 71 (1973).CrossRefGoogle Scholar
  16. 16.
    M. N. Siamwiza, R. C. Lord, and M. C. Chen, Biochemistry 14, 4870 (1975).CrossRefGoogle Scholar
  17. 17.
    M. L. Raymond and A. T. Tu, Biochim. Biophys. Acta 285, 498 (1972).Google Scholar
  18. 18.
    A. T. Tu, B. S. Hong, and T. N. Solie, Biochemistry 10, 1295 (1971).CrossRefGoogle Scholar
  19. 19.
    A. T. Tu and B. S. Hong, J. Biol. Chem., 246, 2772 (1971).Google Scholar
  20. 20.
    J. B. Bjarnason and A. T. Tu, Biochemistry 17, 3395 (1978).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1979

Authors and Affiliations

  • Anthony T. Tu
    • 1
  1. 1.Department of BiochemistryColorado State UniversityFort CollinsUSA

Personalised recommendations