Suppes’ Philosophy of Physics

  • Carlos-Ulises Moulines
  • Joseph D. Sneed
Part of the Profiles book series (PROF, volume 1)


Patrick Suppes has contributed to the philosophy of physics in a variety of ways: directly in work on physical geometry, the axiomatic foundations of classical and relativistic particle mechanics, and the foundations of quantum mechanics; less directly in work on extensive measurement and the general nature of empirical theories. At first glance, these contributions appear diverse and essentially independent of each other. They appear neither to be manifestations of an explicit, coherent approach to the philosophy of physics nor contributions to a systematic program of research in the philosophy of physics. We believe this first impression is misleading. In fact, there is a coherent approach to the philosophy of physics underlying these contributions. Though many of these contributions are important for what they say about specific, traditional problems in the philosophy of physics (e.g., the epistemological status of the concept of mass in classical physics), we feel that their full significance cannot be appreciated until they are viewed in the context of Suppes’ more global views about the nature of physical science and empirical science in general. Thus our strategy in this paper is first to say something about Suppes’ general view of the structure of empirical science, second to see how this general view leads to a ‘research program’ in the philosophy of physics and finally to examine in detail some of Suppes’ own contributions to this research program.


Physical Theory Formal Language Empirical Science Fundamental Measurement Empirical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, E. W.: 1959, ‘The Foundations of Rigid Body Mechanics and the Derivation of Its Laws from Those of Particle Mechanics’, in The Axiomatic Method (ed. by Henkin, Suppes, Tarski), North-Holland, Amsterdam, pp. 250–265.CrossRefGoogle Scholar
  2. [2]
    Balzer, W.: 1976, Empirische Geometrie und Raum-Zeit-Theorie in Mengentheoretischer Darstellung, Doctoral Dissertation, Universität München.Google Scholar
  3. [3]
    Campbell, N. R.: 1928, An Account of the Principles of Measurement and Calculation, Longmans, Green, London and New York.Google Scholar
  4. [4]
    Carnap, R.: 1928, Der Logische Aufban der Welt, Berlin, Schlachtensee.Google Scholar
  5. [5]
    Caratheodory, C.: 1909, ‘Untersuchungen uben die Grundlagen der Thermodynamik’, Math. Ann. 67 Google Scholar
  6. [6]
    Hamel, G.: 1901, ‘Die Axiome der Mechanik’, Handbuch der Physik 5, pp. 1–42.Google Scholar
  7. [7]
    Hempel, C. G.: 1952, Fundamentals of Concept Formation in Empirical Science. The University of Chicago Press.Google Scholar
  8. [8]
    Hermes, H.: 1959, ‘Zur Axiomatisierung der Mechanik’, in The Axiomatic Method (ed. by Henkin, Suppes, Tarski), North-Holland, Amsterdam, pp. 282–290.CrossRefGoogle Scholar
  9. [9]
    Hoelder, O.: 1952, ‘Die Axiome der Quantität und die Lehre von Mass’, Berichte über die Verhandlungen der Königlichen Sachsischen Gesellschaft der Wissenschaft zu Leipzig, Mathematische-Physische Klasse 53, 1–64.Google Scholar
  10. [10]
    Jamison, B. N.: 1956, An Axiomatic Treatment of Langrange’s Equations M. S. thesis, Stanford University, Stanford, California.Google Scholar
  11. [11]
    Krantz, D. H., R. D. Luce, P. Suppes, A. Tversky: 1971, Foundations of Measurement, vol. I. Academic Press, New York and London.Google Scholar
  12. [12]
    Kuhn, T. S.: 1962, The Structure of Scientific Revolutions. The University of Chicago Press, Chicago.Google Scholar
  13. [13]
    Kyburg, H.: 1968, Philosophy of Science: a Formal Approach. New York, Macmillan.Google Scholar
  14. [14]
    McKinsey, J. C. C., A. C. Sugar, P. Suppes: 1953, ‘Axiomatic Foundations of Classical Particle Mechanics’, Journal of Rational Mechanics and Analysis, 2, 253–272.Google Scholar
  15. [15]
    McKinsey, J. C. C., P. Suppes: 1953, ‘Transformations of Systems of Classical Particle Mechanics’, Journal of Rational Mechanics and Analysis, 2, 273–289.Google Scholar
  16. [16]
    McKinsey, J. C. C., P. Suppes: 1955, ‘On the Notion of Invariance in Classical Mechanics’, British Journal for the Philosophy of Science V, 290–302.CrossRefGoogle Scholar
  17. [17]
    Moulines, C. U.: 1975, ‘A Logical Reconstruction of Classical Equilibrium Thermodynamics’, Erkenntnis, 9, 101–130.CrossRefGoogle Scholar
  18. [18]
    Nelson, E.: 1967, Dynamical Theories of Brownian Motion. Princeton University Press, Princeton.Google Scholar
  19. [19]
    Rubin, H., P. Suppes: 1954, Transformations of Systems of Relativistic Particle Mechanics’, Pacific Journal of Mathematics, 4, 563–601.Google Scholar
  20. [20]
    Simon, H.: 1947, ‘The Axioms of Newtonian Mechanics’, Philosophical Magazine, XXXVI, 888–905.Google Scholar
  21. [21]
    Simon, H.: 1954, ‘The Axiomatization of Classical Mechanics’, Philosophy of Science, XXI, 340–343.CrossRefGoogle Scholar
  22. [22]
    Sneed, J. D.: 1971, The Logical Structure of Mathematical Physics, Reidel, Dordrecht, Holland.Google Scholar
  23. [23]
    Stegmuller, W.: 1973, Theorie und Erfahrung, 2. Halbband (Theorienstrukturen und Theoriendynamik), Springer, Berlin-Heidelberg-New York. (English translation by W. Wohlhutter titled The Structure and Dynamics of Theories.)Google Scholar
  24. [24]
    Suppes, P.: 1954, ‘Some Remarks on Problems and Methods in the Philosophy of Science’, Philosophy of Science, 21, 242–248.CrossRefGoogle Scholar
  25. [25]
    Suppes, P.: 1957, Introduction to Logic. Van Nostrand, New York.Google Scholar
  26. [26]
    Suppes, P.: 1959, ‘Axioms for Relativistic Kinematics with or without Parity’, in The Axiomatic Method (ed. by Henkin, Suppes, Tarski), North-Holland, Amsterdam, pp. 291–307.CrossRefGoogle Scholar
  27. [27]
    Suppes, P.: 1960, ‘A Compansion of the Meaning and Use of Models in Mathematics and the Empirical Sciences’, Synthese, 12, 287–301.CrossRefGoogle Scholar
  28. [28]
    Suppes, P.: 1961, ‘Probability Concepts in Quantum Mechanics’, Phil, of Sci., 28, 278–289.Google Scholar
  29. [29]
    Suppes, P.: 1963, ‘The Role of Probability in Quantum Mechanics’, in B. Baumrin (ed.) Philosophy of Science, The Delaware Seminar, vol. 2, 1962–63, New York, Wiley and Sons, pp. 319–337.Google Scholar
  30. [30]
    Suppes, P.: 1966, ‘The Probabilistic Argument for a Non-Classical Logic of Quantum Mechanics’, Philosophy of Science, 33, 14–27.CrossRefGoogle Scholar
  31. [31]
    Suppes, P.: 1970, Set-theoretical Structures in Science, (mimeo reprint) Stanford University, Stanford, California.Google Scholar
  32. [32]
    Suppes, P.: 1973, ‘Some Open Problems in the Philosophy of Space and Time’, Synthese 24 (1972), 298–316. Reprinted in P. Suppes (ed.) Space, Time and Geometry, Dordrecht: Reidel, pp. 383–401.CrossRefGoogle Scholar
  33. [33]
    Suppes, P.: 1973, ‘Logics Appropriate to Empirical Theories’ in C. A. Hooker (ed.) The Logico-Algebraic Approach to Quantum Mechanics, Dordrecht: Reidel, pp. 329–340.Google Scholar
  34. [34]
    Suppes, P.: 1974, ‘Popper’s Analysis of Probability in Quantum Mechanics’ in P. A. Schilpp (ed.), The Philosophy of Karl Popper (vol. 2) La Salle, Ill.: Open Court, pp. 760–774.Google Scholar
  35. [35]
    Suppes, P.: 1974, ‘The Axiomatic Method in the Empirical Sciences’, in Proc. Tarski Symposium, Proc. Symposium in Pure Mathematics, 25 (ed. L. Henkin et al.). AMS, Providence, R.I.Google Scholar
  36. [36]
    Suppes, P.: 1974, ‘The Essential but Implicit Role of Modal Concepts in Science’, in PSA 1972 (ed. K. F. Schaffner, and R. S. Cohen). Reidel, Dordrecht, Holland.Google Scholar
  37. [37]
    Suppes, P. and Zanotti M., ‘Stochastic Incompleteness in Quantum Mechanics’, Synthese, 29, 311–330.Google Scholar
  38. [38]
    Swijtink, Z. G.: 1976, ‘Eliminability in a Cardinal’, Studia Logica, XXXV, 71–89.CrossRefGoogle Scholar
  39. [39]
    Wigner, E. P.: 1932, ‘On the Quantum Correction for Thermodynamic Equilibrium’, Phys. Rev., 749–759.Google Scholar
  40. [40]
    Tarski, A.: 1965, Introduction to Logic and to the Methodology of Deductive Sciences (tr. by O. Helman), New York, Oxford University Press.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1979

Authors and Affiliations

  • Carlos-Ulises Moulines
    • 1
    • 2
  • Joseph D. Sneed
    • 1
    • 2
  1. 1.Universidad Nacional Autonoma de MexicoMexico
  2. 2.University of California at Santa CruzUSA

Personalised recommendations