Questions of Irreversibility and Ergodicity [1962b]

  • Robert S. Cohen
  • John J. Stachel
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 21)


The aim of the following considerations is to point to some problems, partly of epistemological, partly of more technical character, raised by the concept of irreversibility and its position in the framework of statistical thermodynamics. Opinions concerning such questions arc divided; but the origin of the confusion still prevailing in this domain must be sought more in the insufficient care taken by writers on the subject to analyse the epistemological basis of their point of view than in some inherent obscurity of the situation. I shall therefore try in the following to develop one consistent line of argument, which has the advantage of making use of well-established epistemological conceptions, namely those which have proved decisive in the elucidation of the foundations of quantum theory. I hope in this way to provide at least a convenient starting point for further discussion.


Quantum Theory Isolate System Intensive Variable Canonical Distribution Ergodicity Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boltzmann, L., Nature 51 (1895), 413; Wied. Ann. 60 (1897), 392: Math. Ann. 50 (1898), 325 [reprinted in Gesammelte Abhand., vol. 3, nos. 112, 120, 128]; Vorlesungen über Gastheorie, Teil 2, Leipzig 1898, § 90. Cfr. also A. Grünbaum: American Scientist 43 (1955), 550.Google Scholar
  2. [2]
    Rosenfeld, L.: Cours de l’Ecole d’Ete des Houches, 1957.Google Scholar
  3. [3]
    La structure et 1’evolution de l’univers, XI e Conseil de physique Solvay, Bruxelles 1958. PP. 81–95.Google Scholar
  4. [4]
    von Weizsäcker, C. F., Ann. d. Phys. 36 (1939), 275.CrossRefGoogle Scholar
  5. [5]
    Gibbs, J. W., Elementary Principles in Statistical Mechanics. New Haven 1902, p. 150.Google Scholar
  6. [6]
    Kronig. R., Journ. Opt. Soc. Amer. 12 (1926), 547.CrossRefGoogle Scholar
  7. [7]
    Bohr, N., Journ. Chem. Soc., (1932), 376.Google Scholar
  8. [8]
    Rosenleld, L., Norske Vidensk. Selsk. Forhandl. 31 (1958), Nos 9. 10. [This volume, p 484].Google Scholar
  9. [9]
    Rosenfeld, L., Acta Phys. Pol. 14 (1955), 3. [This volume, p. 762].Google Scholar
  10. [10]
    Landau, L. D., and Lifschitz, E. M., Statistical Physics, 1st ed., Oxford 1938, § 40, p. 114; 2nd ed., New York 1958, § 111, p. 350.Google Scholar
  11. [11]
    Blatt, J. Progr. Theor. Phys. 22 (1959), 745.CrossRefGoogle Scholar
  12. [12]
    Bohr, N., in Symposium on Models in Biology, Bristol 1959. [In this connection, see Bohr’s essay ‘Light and Life Revisited’ (1962) in Essays 1958–1962 on Atomic Physics and Human Knowledge (Vintage Books. New York, 1963) — Ed].Google Scholar
  13. [13]
    Rosenfeld, L., Anais da acad. Brasiliera de Ciências 26 (1954), 47.Google Scholar
  14. [14]
    von Neumann, J., Zeits. Phys. 57 (1929), 30; Pauli, W., and Fierz, M., Zeits. Phys. 106 (1937), 572.CrossRefGoogle Scholar
  15. [15]
    Fierz, M., Helv. Phys. Acta 28 (1955), 705.Google Scholar
  16. [16]
    Farquhar, I. E. and Landsberg, P. T., Proc. Roy. Soc., A 239 (1957), 134.Google Scholar
  17. [17]
    Bocchieri, P. and Loinger, A., Phys. Rev. 111 (1958), 668.CrossRefGoogle Scholar
  18. [18]
    Caldirola, P. and Loinger, A., in Max Planck-Festschrift 1958, B. Kockel, W. Macke and A. Papapetrou, eds. ( Berlin, Deutscher Verlag der Wissenschaften, 1959 ), p. 225.Google Scholar
  19. [19]
    Caldirola, P., Nuovo Cimento 14 (1959), 260CrossRefGoogle Scholar
  20. [20]
    Bocchieri, P. and Loinger, A., Phys. Rev. 114 (1959), 948CrossRefGoogle Scholar
  21. [21]
    Prosperi, G. M. and Scotti, A., Nuovo Cimento 13 (1959), 1007.CrossRefGoogle Scholar
  22. [22]
    Albertom, S., Bocchieri. P. and Loinger, A., Journ. Math. Physics 1 (1960), 244CrossRefGoogle Scholar
  23. [23]
    Lorentz, H. A., Abhandlungen über theoretische Physik, Leipzig 1906, No. II, §83Google Scholar
  24. [24]
    Khinchin, A. I., Mathematical Foundations of Statistical Mechanics, Dover, New York, 1949.Google Scholar
  25. [25]
    Résibois, P. and Prigogine, L., Bull. Acad. Roy. Belg. (5) 46 (1960–62). 53–60Google Scholar
  26. [26]
    Ludwig, G., Zeits. Phys. 150 (1958), 346: 152 (1958), 98.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1979

Authors and Affiliations

  • Robert S. Cohen
  • John J. Stachel

There are no affiliations available

Personalised recommendations