Advertisement

Taurine in Infant Nutrition

  • Gerald E. Gaull
  • David K. Rassin
Part of the Fifth Nutricia Symposium book series (NUSY, volume 5)

Abstract

Taurine (fig. 1) is one of the most abundant amino acids in the body (1), with the largest pool present in muscle. In mammals, taurine and inorganic sulfate are the major end products of methionine metabolism (fig. 2). Despite the fact that taurine is both ubiquitous and abundant, it takes part in few known biochemical reactions. Considerable taurine is conjugated with bile acids in liver (1), but other biochemical reactions take place to a very limited extent, if at all (2). Although there are numerous proposals for alternative pathways for the biosynthesis of taurine (cf. 2), the enzyme immediately responsible for its synthesis in physiologically significant amounts is cysteinesulfinic acid decarboxylase. There are large differences amongst species in the in vitro activity of this enzyme, as there are in the concentration of taurine itself (1). For example, the activity of cysteinesulfinic acid decarboxylase, as measured in our laboratory, is 1000-fold higher in adult rat liver than in adult human liver (table 1).

Keywords

Bile Acid Human Milk Occipital Lobe Human Infant Conjugate Bile Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobsen, J.G. and L.H. Smith, Jr. (1968) Physiol. Rev. 48:424.PubMedGoogle Scholar
  2. 2.
    Huxtable, R. and A. Barbeau (eds.). (1976) Taurine, Raven Press, New York.Google Scholar
  3. 3.
    Barbeau, A. and R. Huxtable (eds.). (1978) Taurine and Neurological Disorders, Raven Press, New York.Google Scholar
  4. 4.
    Ingoglia, N.A., J.A. Sturman, T.D. Lindquist and G.E. Gaull. (1976) Brain Res. 115:535.PubMedCrossRefGoogle Scholar
  5. 5.
    Ingoglia, N.A., J.A. Sturman, D.K. Rassin and T.D. Lindquist. (1978) J. Neurochem. 31:161.PubMedCrossRefGoogle Scholar
  6. 6.
    Gaull, G.E., D.K. Rassin, N.G.R. Raira and K. Heinonen. (1977) J. Pediat. 90:348.PubMedCrossRefGoogle Scholar
  7. 7.
    Sturman, J.A., D.K. Rassin and G.E. Gaull. (1977) Life Sci 21:1.PubMedCrossRefGoogle Scholar
  8. 8..
    Sturman, J.A., D.K. Rassin and G.E. Gaull. (1978) In: Taurine in Neurological Disease, Huxtable, R. and A. Barbeau eds., Raven Press, New York p. 49.Google Scholar
  9. 9.
    Sturman, J.A. and G.L. Gaull. (1975) J. Neurochem. 25:831.PubMedCrossRefGoogle Scholar
  10. 10.
    Sturman, J.A., D.K. Rassin and G.E. Gaull. (1970) J. Neurochem. 17:1117.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaull, G.E., J.A. Sturman and N.C.R. Raiha. (1972) Pediat. Res. 6:538.PubMedCrossRefGoogle Scholar
  12. 12.
    Gaull, G.E., W. von Berg, N.C.R. Raiha and J.A. Sturman. (1973) Pediat. Res. 7:527.PubMedGoogle Scholar
  13. 13.
    Sturman, J.A., G.E. Gaull and W.H. Niemann. (1976) J. Neurochem. 26:457.PubMedCrossRefGoogle Scholar
  14. 14..
    Sturman, J.A., G.E. Gaull. and W.H. Niemann. (1976) J. Neurochem. 27:425.CrossRefGoogle Scholar
  15. 15..
    Agrawai, H.C., A.N. Davison and L.K. Kaczmarek. (1971) Biochem. J. 122:759.Google Scholar
  16. 16.
    Rassin, D.K., G.E. Gaull, K. Heinonen and N.C.R. Raira. (1977) Pediatrics 59:407.PubMedGoogle Scholar
  17. 17.
    Rassin, D.K., G.E. Gaull, N.C.R. Raira and K. Heinonen. (1977) J. Pediat. 90:356.PubMedCrossRefGoogle Scholar
  18. 18..
    Dickinson, J.C., H. Rosenblum and P.B. Hamilton. (1970) Pediatrics 45:606.Google Scholar
  19. 19.
    Jagenburg, O.R. (1959) Scand. J. Clin. Lab. Invest. 11:3.Google Scholar
  20. 20.
    Jonxis, J.H.P. (1951) Arch. Dis. Childh. 26:272.Google Scholar
  21. 21.
    Souchon, F. (1952) Z. Ges. Exp. Med. 118:219.PubMedCrossRefGoogle Scholar
  22. 22.
    Rassin, D.K., J.A. Sturman and G.E. Gaull. (1978) Early Hum. Develop. 2:1.CrossRefGoogle Scholar
  23. 23.
    Sturman, J.A., D.K. Rassin and G.E. Gaull (1977) Pediat. Res. 11:28.PubMedGoogle Scholar
  24. 24.
    Berson, E.L., K.C. Hayes, A.R. Rabin, S.Y. Schmidt and G. Watson. (1976) Invest. Ophthalmol. 15:52.PubMedGoogle Scholar
  25. 25.
    Knopf, K., J.A. Srurman, M. Armstrong and K.G. Hayes. (1978) J. Nutr. 108:773.PubMedGoogle Scholar
  26. 26.
    Sturman, J.A., D.K. Rassin, K.C. Hayes and G.E. Gaull. (1978) J. Nutr. 108:1462.PubMedGoogle Scholar
  27. 27.
    Encrantz, J.G. and J. Sjovall. (1959) Clin. Chim. Acta 4:793.PubMedCrossRefGoogle Scholar
  28. 28.
    Sjovall, J. (1960) Clin. Chim. Acta 5:33.CrossRefGoogle Scholar
  29. 29.
    Poley, J.R., J.C. Dower, C.A. Owen and G.B. Stickler. (1964) J. Lab. Clin. Med. 63:838.PubMedGoogle Scholar
  30. 30.
    Challacombe, D.N., S. Edkins and G.A. Brown. (1975) Arch. Dis. Childh. 50:837.PubMedCrossRefGoogle Scholar
  31. 31.
    Brueton, M. J., H.M. Berger, G.A. Brown, L. Ablitt, N. Iyangkaran and B.A. Wharton. (1978) Gut 19:95.PubMedCrossRefGoogle Scholar
  32. 32.
    Rabin, B., R.J. Nicolosi and K.C. Hayes. (1976) J. Nutr. 106:1241.PubMedGoogle Scholar
  33. 33.
    Grosso, D.S. and R. Bressler. (1976) Biochem. Pharmacol. 25:2227.PubMedCrossRefGoogle Scholar
  34. 34..
    Schersten, T. (1970) In: Metabolic Conjugation and Metabolic Hydrolysis, Fishman, W.H. ed., Academic Press, New York, vol. 2, p. 75.Google Scholar
  35. 35.
    Nervi, F.O. and J.M. Dietschv. (1978) J. Clin. Invest. 61:895.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers bv, The Hague 1979

Authors and Affiliations

  • Gerald E. Gaull
    • 1
    • 2
  • David K. Rassin
    • 1
    • 3
  1. 1.Department of Human Development and NutritionNew York State Institute for Basic Research in Mental RetardationStaten IslandUSA
  2. 2.Departments of Pediatrics and PharmacologyMount Sinai School of Medicine of the City University of New YorkUSA
  3. 3.Department of PharmacologyMount Sinai School of Medicine of the City University of New YorkUSA

Personalised recommendations