Fundamental Concepts and Propositions in the Theory of Normed Algebras

  • M. A. Naimark

Abstract

We shall say that R is a linear algebra if:
  1. 1)

    R is a linear space;

     
  2. 2)

    an operation of multiplication (which in general is not commutative) is defined in R satisfying the following conditions: a) α(xy) = (αx)y = x(αy), b) (xy)z = x(yz), c) (x+y)z = xz+yz, d) x(y+z) = xy + xz for arbitrary x, y, zR and any number α.

     

Keywords

Hull Dition Topo Alsc Prool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Wolters-Noordhoff Publishing, Groningen, The Netherlands 1972

Authors and Affiliations

  • M. A. Naimark
    • 1
  1. 1.Steklov Institute of MathematicsAcademy of SciencesU.S.S.R.

Personalised recommendations