Skip to main content

Pathways and regulation of pyruvate metabolism

  • Chapter

Abstract

Pyruvate occupies a central position in the metabolism of all animal cells, a fact easily confirmed by a cursory glance at a chart of metabolic pathways. Such is the obvious importance of pyruvate metabolism that it is surprising that so many inborn errors have been found in this area. Its metabolism has been studied extensively in recent years and a number of important advances made, especially in our understanding of its regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Halestrap, (1978). Pyruvate transport across mitochondrial and plasma membranes. In V. Esmann (ed.). Regulatory Mechanisms of Carbohydrate Research, pp. 61–70. (Pergamon Press Oxford)

    Google Scholar 

  2. A. P. Halestrap, (1975). The mitochondrial pyruvate carrier: kinetics and specificity for substrates and inhibitors. Biochem. J., 148,85

    PubMed  CAS  Google Scholar 

  3. A. P. Halestrap, (1978). Pyruvate and ketone body transport across the mitochondrial membrane. Exchange properties, pH dependence and mechanism of the carrier. Biochem. J., 172377

    PubMed  CAS  Google Scholar 

  4. S. Papa and G. Paradies, (1974). On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat liver mitochondria. Eur. J. Biochem., 49, 265

    PubMed  CAS  Google Scholar 

  5. G. Paradies and S. Papa 1975. The transport of carboxylic oxo acids in rat liver mitochondria. FEBS Lett. 52 14

    PubMed  CAS  Google Scholar 

  6. G. Paradies and S. Papa, (1976). Substrate regulation of the pyruvate transporting system in rat liver mitochondria. FEBS Lett., 62, 318

    PubMed  CAS  Google Scholar 

  7. M. A. Titheradge and H. G. Coore, (1975). Initial rates of pyruvate transport in mitochondria determined by an inhibitor stop technique. Biochem. J., 150, 553

    PubMed  CAS  Google Scholar 

  8. M. A. Titheradge and H. G. Coore, (1976). The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett., 63, 45

    PubMed  CAS  Google Scholar 

  9. A. P. Halestrap and R. M. Denton, (1974). Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by a-cyano-4-hydroxycinnamate. Biochem. J., 138, 313

    PubMed  CAS  Google Scholar 

  10. A. P. Halestrap, (1976). The mechanism of the inhibition of the mitochondrial pyruvate transporter by a-cyanocinnamate derivatives. Biochem. J., 156, 181

    PubMed  CAS  Google Scholar 

  11. A. P. Halestrap, (1978). The stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem. J., 172,389

    PubMed  CAS  Google Scholar 

  12. A. P. Halestrap and R. M. Denton, (1975). The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by α-cyano-4-hydroxycinnamate and related compounds. Biochem. J., 148, 97

    PubMed  CAS  Google Scholar 

  13. J. Mendes-Mourao, A. P. Halestrap, D. M. Crisp and C. I. Pogson (1975). The involvement of mitochondrial pyruvate transport in the pathways of gluconeogenesis from serine and alanine in isolated rat and mouse liver cells. FEBS Lett., 53, 29

    PubMed  CAS  Google Scholar 

  14. A. P. Halestrap M. D. Brand and R. M. Denton 1974. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and a keto-isocaproate. Biochim. Biophys. Acta 367 10

    Google Scholar 

  15. J. B. Clark and J. M. Land, (1974). Differential effects of 2-oxo-acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem. J., 140, 25

    PubMed  CAS  Google Scholar 

  16. J. M. Land, J. Mowbray and J. B. Clark, (1976). Control of pyruvate and hydroxybutyrate utilization in rat brain mitochondria and its relationship to phenylketonuria and maple syrup urine disease. J. Neurochem., 26, 823

    PubMed  CAS  Google Scholar 

  17. M. S. Patel, (1972). The effect of phenylpyruvate on pyruvate metabolism in rat brain. Biochem. J., 128, 677

    PubMed  CAS  Google Scholar 

  18. T. B. Patel, R. F. G. Booth and J. B. Clark, (1977). Inhibition of acetoacetate oxidation by brain mitochondria from the suckling rat by phenylpyruvate and a-keto-isocaproate. J. Neurochem., 29, 1151

    PubMed  CAS  Google Scholar 

  19. A. P. Halestrap, (1976). Transport of pyruvate and lactate into humanerythrocytes: evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem. J., 156, 193

    PubMed  CAS  Google Scholar 

  20. J. M. J. Lamers, and W. C. Hulsman, (1975). Inhibition of pyruvate transport by fatty acids in isolated cells from rat small intestine. Biochim. Biophys. Acta, 394, 31

    PubMed  CAS  Google Scholar 

  21. J. M. J. Lamers, (1975). Some characteristics of monocarboxylic acid transfer across the cell membrane of epithelial cells from rat small intestine. Biochim. Biophys. Acta, 413, 265

    CAS  Google Scholar 

  22. T. L. Spencer and A. L. Lehninger, (1976). L-Lactate transport in Ehrlich ascites tumour cells. Biochem. J., 154, 405

    PubMed  CAS  Google Scholar 

  23. B. Deuticke, I. Rickert and E. Beyer, (1978). Stereoselective SH dependent transfer of lactate in mammalian erythrocytes. Biochim. Biophys. Acta, 507, 137

    PubMed  CAS  Google Scholar 

  24. W. Rice and T. L. Steck, (1976). Pyruvate flux into resealed ghosts from human erythrocytes. Biochim. Biophys. Acta, 433, 39

    PubMed  CAS  Google Scholar 

  25. W. Rice and T. L. Steck, (1977). Pyruvate transport into inside-out vesicles isolated from human erythrocyte membranes. Biochim. Biophys. Acta, 468, 305

    PubMed  CAS  Google Scholar 

  26. D. L. Leeks and A. P. Halestrap, (1979). Chloride-independent transport of pyruvate and lactate across the red blood cell membrane. Biochem. Soc. Trans. (In press)

    Google Scholar 

  27. H. Sies, G. Noack and K-H. Haider, (1973). Carbon dioxide concentration and the distribution of monocarboxylate and H+ ions between intracellular and extracellular spaces of haemoglobin-free perfused rat liver. Eur. J. Biochem., 38, 247

    PubMed  CAS  Google Scholar 

  28. B. L. Andersen, H. L. Tarpley and D. M. Regan, (1978). Characterization of /ft-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim. Biophys. Acta, 508, 525

    PubMed  CAS  Google Scholar 

  29. R. M. Denton and C. I. Pogson, (1976). Metabolic Regulation. (Chapman and Hall London)

    Google Scholar 

  30. J. R. Williamson, (1976). Role of anion transport in the regulation of metabolism. In etR. W. Hanson and M. A. Mehlman (eds.). Gluconeogenesis: Its Regulation in Mammalian Species, pp. 165–220 (Wiley Interscience New York)

    Google Scholar 

  31. K. Imamura and T. Tanaka, (1972). Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. J. Biochem., 71, 1043

    PubMed  CAS  Google Scholar 

  32. E. Eigenbrodt and W. Schoner, (1977). Purification and properties of the pyruvate kinase isoenzymes type L and M1 from chicken liver. Hoppe-Seyler’s Z. Physiol. Chem., 358, 1033

    PubMed  CAS  Google Scholar 

  33. K. Harada, S. Saheki, K. Wada and T. Tanaka, (1978). Purification of four pyruvate kinase isoenzymes of rats by affinity elution chromatography. Biochim. Biophys. Acta, 524, 327

    PubMed  CAS  Google Scholar 

  34. W. Seubert and W. Schoner, (1971). The regulation of pyruvate kinase. Curr. Top. Cell. Regul. 3,237

    CAS  Google Scholar 

  35. U. Dahlquist-Edberg, (1978). Lack of phosphorylatable site and some kinetic properties of erythrocyte pyruvate kinase from the rat. FEBS Lett., 88, 139

    Google Scholar 

  36. I. A. Rose and J. V. B. Warms, (1966). Control of glycolysis in the human red blood cell. J. Biol. Chem., 241, 4848

    PubMed  CAS  Google Scholar 

  37. G. F. Munro and D. R. Miller, (1970). Mechanism of fructose diphosphateactivation of a mutant pyruvate kinase from human red cells. Biochim. Biophys. Acta, 206, 89

    Google Scholar 

  38. K. Adachi, P. Ghory, T. Asakura and E. Schwartz, (1977). A monomeric form of pyruvate kinase in human pyruvate kinase deficiency. Proc. Natl. Acad. Sci. USA, 74, 501

    PubMed  CAS  Google Scholar 

  39. O. Ljungstrom, G. Hjelmquist and L. Engstrom, (1974). Phosphorylation of purified liver pyruvate kinase by cyclic AMP stimulated protein kinase. Biochim. Biophys. Acta, 358, 289

    Google Scholar 

  40. L. Engstrom, (1978). The regulation of liver pyruvate kinase by phosphorylation-dephosphorylation. Curr. Top. Cell. Regul, 13, 29

    CAS  Google Scholar 

  41. J. E. Feliu, L. Hue and H-G. Hers, (1976). Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc. Natl. Acad. Sci. USA, 73, 2762

    PubMed  CAS  Google Scholar 

  42. L. Berglund, O. Ljungstrom and L. Engstrom, (1977). Purification and characterization of pig kidney pyruvate kinase (Type A). J. Biol. Chem., 252, 6108

    PubMed  CAS  Google Scholar 

  43. E. Eigenbrodt, M. Abdel-Fattah Mostafa and W. Schoner, (1977). Inactivation of a pyruvate kinase type M2 from chickem liver by phosphorylation catalyzed by a cAMP-independent protein kinase. Hoppe-Seyler’s Z. Physiol. Chem., 358, 1047

    PubMed  CAS  Google Scholar 

  44. C. I. Pogson, (1968). Adipose tissue pyruvate kinase. Properties and interconversion of two active forms. Biochem. J., 110, 67

    PubMed  CAS  Google Scholar 

  45. I. H. Fine, N. O. Kaplan and D. Kuftinec, (1963). Developmental changes of mammalian lactic dehydrogenases. Biochemistry, 2, 116

    CAS  Google Scholar 

  46. J. J. Holbrook, A. Liljas, S. J. Steindel and M. G. Rossman, (1975). Lactate dehydrogenase. In P. D. Boyer (ed.).The Enzymes, vol. XI, pp. 191–292. (Academic Press New York)

    Google Scholar 

  47. R. M. Denton, P. J. Randle, B. J. Bridges, R. H. Cooper, A. L. Kerbey, H. T. Pask, D. L. Severson, D. Stansbie and S. Whitehouse, (1975). Regulation of mammalian pyruvate dehydrogenase. Mol. Cell. Biochem., 9, 27

    PubMed  CAS  Google Scholar 

  48. D. A. Walsh, R. H. Cooper, R. M. Denton, B. J. Bridges and P. J. Randle, (1976). The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation. Biochem. J., 157, 41

    PubMed  CAS  Google Scholar 

  49. P. H. Sugden and P. J. Randle, (1978). Regulation of pig heart pyruvate dehydrogenase by phosphorylation. Studies on the subunit and phosphorylation stoichiometrics. Biochem. J., 173, 659

    PubMed  CAS  Google Scholar 

  50. P. B. Garland and P. J. Randle, (1964). Control of pyruvate dehydrogenase in perfused heart by the intracellular concentration of acetyl CoA. Biochem. J., 91, 6

    Google Scholar 

  51. C. S. Tsai, M. W. Burgett, and L. J. Reed, (1973). α-keto acid dehydrogenase complexes. XX. A kinetic study of the pyruvate dehydrogenase complex from bovine kidney. J. Biol. Chem., 248, 8348

    PubMed  CAS  Google Scholar 

  52. T. C. Linn, F. H. Pettit and L. J. Reed, (1969). α-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA, 62, 234

    PubMed  CAS  Google Scholar 

  53. T. C. Linn, F. H. Pettit, F. Hucho and L. J. Reed, (1969). α-keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart and livermitochondria. Proc. Natl. Acad, Sci. USA, 64, 227

    CAS  Google Scholar 

  54. S. J. Yeaman, E. T. Hutcheson, T. E. Roche, F. H. Pettit, J. R. Brown, L. J. Reed, D. C. Watson and G. H. Dixon, (1978). Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry, 17, 2364

    PubMed  CAS  Google Scholar 

  55. L. J. Reed, (1974). Multienzyme complexes. Accts. Chem. Res., 7, 40

    CAS  Google Scholar 

  56. R. M. Denton, P. J. Randle and B. R. Martin, (1972). Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem. J., 128, 161

    PubMed  CAS  Google Scholar 

  57. R. H. Cooper, P. J. Randle and R. M. Denton, (1975). Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction, Nature, 257, 808

    PubMed  CAS  Google Scholar 

  58. S. Whitehouse and P. J. Randle, (1973). Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate. Biochem. J., 134, 651

    PubMed  CAS  Google Scholar 

  59. S. Whitehouse, R. H. Cooper and P. J. Randle, (1974). Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem. J., 141, 761

    PubMed  CAS  Google Scholar 

  60. J. H. Lacey and P. J. Randle, (1978). Inhibition of lactate gluconeogenesis in rat kidney by dichloroacetate. Biochem. J., 170, 551

    PubMed  CAS  Google Scholar 

  61. W. A. Hughes and R. M. Denton, (1979). Evidence for multi-site phosphorylation of pyruvate dehydrogenase within intact mitochondria. Biochem. Soc. Trans. (In press)

    Google Scholar 

  62. P. H. Sugden, N. J. Hutson, A. L. Kerbey and P. J. Randle, (1978). Phosphorylation of additional sites on pyruvate dehydrogenase inhibits its reactivation by pyruvate dehydrogenase phosphatase. Biochem. J., 169, 433

    PubMed  CAS  Google Scholar 

  63. F. J. Ballard, R. W. Hanson and L. Reshef, (1970). Immunochemical studies with soluble and mitochondrial pyruvate carboxylase activities from rat tissues. Biochem. J., 119, 735

    PubMed  CAS  Google Scholar 

  64. P. Walter and M. Anabitarte, (1973). The use of glutamate dehydrogenase as a mitochondrial marker for the determination of intracellular pyruvate carboxylase distribution in rat liver. FEBS Lett., 37, 170

    PubMed  CAS  Google Scholar 

  65. M. F. Utter and M. C. Scrutton, (1969). Pyruvate carboxylase. Curr. Top. Cell. Regul., 1, 253

    CAS  Google Scholar 

  66. M. F. Utter, R. E. Barden and B. L. Taylor, (1975). Pyruvate carboxylase: an evaluation of the relationships between structure and mechanisms and between structure and catalytic activity. Adv. Enzymol., 42, 1

    PubMed  CAS  Google Scholar 

  67. G. J. Barrit, G. L. Zander and M. F. Utter, (1976). The regulation of pyruvate carboxylase activity in gluconeogenic tissues. In R. W. Hanson and M. A. Mehlman (eds.). Gluconeogenesis: Its Regulation in Mammalian Species, pp. 3–46. (Wiley New York

    Google Scholar 

  68. W. R. McClure, H. A. Lardy, M. Wagner and W. W. Cleland, (1971). Rat liver pyruvate carboxylase. II. Kinetic studies of the forward reaction. J. Biol. Chem., 246, 3579

    PubMed  CAS  Google Scholar 

  69. G. B. Warren and K. F. Tipton, (1974). Pig liver pyruvate carboxylase. The reaction pathway for the carboxylation of pyruvate. [ti[itBiochem. J., 139, 311

    Google Scholar 

  70. M. C. Scrutton and M. F. Utter, (1965). Pyruvate carboxylase: some physical and chemical properties of the highly purified enzyme. J. Biol. Chem., 240, 1

    PubMed  CAS  Google Scholar 

  71. W. R. McClure, H. A. Lardy and H. P. Kneifel, (1971). Rat liver pyruvatecarboxylase. Preparation, properties and cation specificity. J. Biol. Chem., 246, 3569

    PubMed  CAS  Google Scholar 

  72. R. E. Barden, B. L. Taylor, F. Isohashi, W. H. Frey, G. Zander, J. C. Lee and M. F. Utter, (1975). Structural properties of pyruvate carboxylases from chicken liver and other sources. Proc. Natl. Acad. Sci. USA, 72, 4308

    PubMed  CAS  Google Scholar 

  73. G. B. Warren and K. F. Tipton, (1974). Pig liver pyruvate carboxylase. Purification, properties and cation specificity. Bicchem. J., 139, 297

    CAS  Google Scholar 

  74. L. K. Ashman, D. B. Keech, J. C. Wallace and J. Nielsen, (1972). Sheep kidney pyruvate carboxylase. Studies on its activation by acetyl coenzyme A and characteristics of its acetyl coenzyme A independent reaction. J. Biol. Chem., 247, 5818

    PubMed  CAS  Google Scholar 

  75. M. C. Scrutton and M. D. White, (1972). Pyruvate carboxylase from rat liver. Properties in the absence and at four concentrations of acetyl CoA. Biochem. Biophys. Res. Comm., 48, 85

    PubMed  CAS  Google Scholar 

  76. M. C. Scrutton, (1974). Pyruvate carboxylase studies of the activator-independent catalysis and of the specificity of activation by acyl derivatives of coenzyme A for the enzyme from rat liver. J. Biol. Chem. 249, 7057

    PubMed  CAS  Google Scholar 

  77. D. Seufert, E. M. Herlemann, E. Albrecht and W. Seubert, (1971). Purification and properties of pyruvate carboxylase from rat liver. Hoppe-Seyler’s Z. Physiol. Chem., 352, 459

    PubMed  CAS  Google Scholar 

  78. A. P. Halestrap, (1974). Ph.D. Thesis, University of Bristol

    Google Scholar 

  79. W. R. McClure and H. A. Lardy, (1971). Rat liver pyruvate carboxylase. IV. Factors effecting the regulation in vivo. J. Biol Chem., 246, 3591

    PubMed  CAS  Google Scholar 

  80. G. Von Glutz and P. Walter, (1976). Regulation of pyruvate carboxylation by acetyl CoA in rat liver mitochondria. FEBS Lett., 72, 299

    Google Scholar 

  81. T. M. Chan and R. A. Freedland, (1972). The effect of propionate on the metabolism of pyruvate and lactate in the perfused rat liver. Biochem. J., 127, 539

    PubMed  CAS  Google Scholar 

  82. A. L. Greenbaum, K. A. Gumaa and P. McLean, (1971). The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch. Biochem. Biophys., 143,617

    PubMed  CAS  Google Scholar 

  83. P. Walter and J. W. Stucki, (1970). Regulation of pyruvate carboxylase in rat liver mitochondria by adenine nucleotides and short chain fatty acids. Eur. J. Biochem., 12, 508

    PubMed  CAS  Google Scholar 

  84. J. W. Stucki, F. Braurand and P. Walter, (1972). Regulation of pyruvate metabolism in rat liver mitochondria by adenine nucleotides and fatty acids. Eur. J. Biochem., 27, 181

    PubMed  CAS  Google Scholar 

  85. S. M. Tilgham, R. W. Hanson and F. J. Ballard, (1976). Hormonal regulation of phosphoenolpyruvate carboxykinase (GTP) in mammalian tissues. In R. W. Hanson and M. A. Mehlman (eds.). Gluconeogenesis: Its Regulation in Mammalian Species, pp. 47–91. (Wiley New York)

    Google Scholar 

  86. F. J. Ballard and R. W. Hanson, (1969). Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J. Biol. Chem., 244, 5625

    PubMed  CAS  Google Scholar 

  87. R. C. Nordlie and H. A. Lardy, (1963). Mammalian liver phosphoenolpyruvate carboxykinase activities. J. Biol. Chem., 238, 2259

    PubMed  CAS  Google Scholar 

  88. R. W. Hanson and A. J. Garber, (1972). Phosphoenolpyruvate car-boxykinase. I. Its role in gluconeogenesis. Am. J. Clin. Nutr., 25, 1010

    PubMed  CAS  Google Scholar 

  89. B. Robinson, (1971). Transport of phosphoenolpyruvate by the tricarboxylate transporting system in mammalian mitochondria. FEBS Lett., 14, 309

    PubMed  CAS  Google Scholar 

  90. B. Robinson, (1971). The role of the tricarboxylate transporting system in the production of phosphoenolpyruvate by ox liver mitochondria. FEBS Lett., 16, 267

    PubMed  CAS  Google Scholar 

  91. M. F. Utter and H. M. Kolenbrander, (1972). Formation of oxaloacetate by C02 fixation on phosphoenolpyruvate. In P. D. Boyer (ed.). The Enzymes, Vol. 6, pp. 117–168. (Academic Press London)

    Google Scholar 

  92. M. Jomain-Baum, V. L. Schramm and R. W. Hanson, (1976). Mechanism of 3-mercaptopicolinic acid inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem., 251, 37

    PubMed  CAS  Google Scholar 

  93. R. E. Snoke, J. B. Johnston and H. A. Lardy, (1971). Response of phosphopyruvate carboxylase to tryptophan metabolites and ions. Eur. J. Biochem., 24, 342

    PubMed  CAS  Google Scholar 

  94. L. A. Bentle, R. E. Snoke and H. A. Lardy, (1976). A protein factor required for activation of phosphoenolpyruvate carboxykinase by ferrous ions. J. Biol. Chem., 251, 29

    CAS  Google Scholar 

  95. L. Bentle and H. A. Lardy, (1977). Phenolpyruvate carboxykinase ferroactivator. Purification and some properties. J. Biol. Chem., 252, 1431

    PubMed  CAS  Google Scholar 

  96. M. J. MacDonald, L. A. Bentle and H. A. Lardy, (1978). Phosphoenolpyruvate carboxykinase ferroactivator. Distribution and the influence of diabetes and starvation. J. Biol. Chem., 253, 116

    PubMed  CAS  Google Scholar 

  97. G. A. O. Alleyne and G. H. Scullard, (1969). Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J. Clin. Invest., 48, 364

    PubMed  CAS  Google Scholar 

  98. P. B. Iynedjian, F. J. Ballard and R. W. Hanson, (1975). The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid base balance and glucocorticoids. J. Biol. Chem., 250, 5596

    PubMed  CAS  Google Scholar 

  99. P. B. Iynedjian and R. W. Hanson, (1977). Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3/5/-monophosphate. J. Biol., Chem., 252, 655

    CAS  Google Scholar 

  100. W. D. Wicks 1969. Induction of hepatic enzymes by adesine 3′5″-monophosphate in organ culture. J. Biol. Chem. 244 394

    Google Scholar 

  101. M. Castagna, W. K. Palmer and D. A. Walsh, (1975). Nuclear protein kinase activity in perfused rat liver stimulated with dibutyryl-adenosine cyclic 3′5″monophosphate. Eur. J. Biochem., 55, 193

    PubMed  CAS  Google Scholar 

  102. P. Felig, (1975). Amino acid metabolism in man. Ann. Rev. Biochem., 44, 933

    PubMed  CAS  Google Scholar 

  103. T. W. Chang and A. L. Goldberg, (1978). The origin of alanine produced in skeletal muscle. J. Biol. Chem., 253, 3677

    PubMed  CAS  Google Scholar 

  104. J. A. Illingworth and R. Mullings, (1976). Pyruvate dehydrogenase activation after an increase in cardiac output. Biochem. Soc. Trans., 4, 291

    PubMed  CAS  Google Scholar 

  105. G. Henning, G. Loffler and O. H. Wieland, (1975). Active and inactive forms of pyruvate dehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Lett., 59, 142

    Google Scholar 

  106. O. Wieland, E. Siess, F. H. Schulze-Wethmar, H. G. von Funcke and B. Winton, (1971). Active and inactive forms of pyruvat dehydrogenase in rat heart and kidney: effect of diabetes, fasting and refeeding on pyruvate dehydrogenase interconversion. Arch. Biochem. Biophys., 143, 593

    PubMed  CAS  Google Scholar 

  107. A. L. Kerbey, P. J. Randle, R. H. Cooper, S. Whitehouse, H. T. Pask, and R. M. Denton, (1976). Regulation of pyruvate dehydrogenase in rat heart. Biochem. J., 154, 327

    PubMed  CAS  Google Scholar 

  108. N. J. Hutson, A. L. Kerbey, P. J. Randle and P. H. Sugden, (1978). Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat. Biochem. J., 173,669

    PubMed  CAS  Google Scholar 

  109. B. Jeanrenaud and D. Hepp, (eds.). (1970). Adipose tissue: Regulation and Metabolic Functions. (Academic Press New York)

    Google Scholar 

  110. R. M. Denton, N. dgell, B. J. Bridges and G. Poole, (1979). Regulation of pyruvate kinase activity in rat epididymal adipose tissue by insulin and adrenalin. (Submitted for publication)

    Google Scholar 

  111. R. M. Denton, B. J. Bridges, R. W. Brownsey, G. L. Evans, W. A. Hughes and J. McCormack, (1978). Acute hormonal regulation of fatty acid synthesis in mammalian tissues. In R. Dils and J. Knudsen (eds.). Regulation of Fatty Acid and Glycerolipid Metabolism, pp. 21–30. (Pergamon Press Oxford)

    Google Scholar 

  112. W. A. Hughes and R. M. Denton, (1976). Incorporation of 32Piinto pyruvate dehydrogenase phosphate in mitochondria from control and insulin-treated adipose tissue. Nature, 264, 471

    PubMed  CAS  Google Scholar 

  113. R. M. Denton, W. A. Hughes, B. J. Bridges, R. W. Brownsey, J. G. McCormack and D. Stansbie, (1978). Regulation of mammalian pyruvate dehydrogenase by hormones. Horm. Cell Regul., 2, 191

    CAS  Google Scholar 

  114. J. H. Exton and C. R. Park, (1969). Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine and adenosine 3′5″-monophosphate on gluconeogenic intermediates in the perfused rat liver. J. Biol. Chem., 244, 1424

    PubMed  CAS  Google Scholar 

  115. P. A. J. Adams and R. C. Haynes, (1969). Control of hepatic mitochondrial C02 fixation by glucagon, epinephrine and Cortisol. J. Biol. Chem., 244, 6444

    Google Scholar 

  116. R. K. Yamazaki, (1975). Glucagon stimulation of mitochondrial respiration. J. Biol. Chem., 250, 7924

    PubMed  CAS  Google Scholar 

  117. A. P. Halestrap, (1978). Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c1 and cytochrome c by glucagon treatment of rats. Biochem. J., 172, 399

    PubMed  CAS  Google Scholar 

  118. D. Stansbie, R. J. Sherriff and R. M. Denton, (1979). Fructose load test — an in vivo screening test designed to assess pyruvate dehydrogenase activity and interconversion. (In press)

    Google Scholar 

  119. D. L. Williams, G. H. Spray and B. H. Williamson, (1971). Metabolic effects of propionate administration to normal and vitamin B12 deficient rats. Biochem. J., 121, 16

    Google Scholar 

  120. G. Lindblad, B. S. Lindblad, P. Olin, G. Svanberg and R. Zetterstrom, (1968). Methylmalonic acidaemia-a disorder associated with acidosis, hyperglycinaemia and hyperlactataemia. Acta Paediatr. Scand., 57, 417

    PubMed  CAS  Google Scholar 

  121. R. K. Yamazaki and G. S. Graetz, (1977). Glucagon stimulation of citrulline formation in isolated hepatic mitochondria. Arch. Biochem. Biophys., 178, 19

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 The Society for the Study of Inborn Errors of Metabolism

About this chapter

Cite this chapter

Denton, R.M., Halestrap, A.P. (1980). Pathways and regulation of pyruvate metabolism. In: Burman, D., Holton, J.B., Pennock, C.A. (eds) Inherited Disorders of Carbohydrate Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9215-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9215-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9217-7

  • Online ISBN: 978-94-009-9215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics