Nitrate Overdose; Effects and Consequences

  • M. W. Banoub
Part of the Developments in Hydrobiology book series (DIHY, volume 2)


A groundwater-pond (gravel-pit), dredged 6 years ago for hydrological and hydrochemical investigations, is already starting to show eutrophication. The input source is mainly confined to its surrounding groundwater, with which the pond is in effective exchange, and which contains above-normal concentrations of nitrate (ca 30mg/LN). This nitrate is substantially reduced by denitrifiers in the pond. However, the N/P nutrient ratio remains about 1000 (by weight). Measurements of primary production, heterotrophic production and biomass made during the past 4 years are discussed in relation to the outstanding nutrient situation and with respect to the pond’s trophic development.


Particulate Organic Nitrogen Nutrient Situation Biomass Parameter Total Oxygen Uptake Hydrochemical Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banoub, M. W. 1970. The cycle and balances of organic and inorganic matter in the English Channel. Dr. Thesis Univ. Southampton.Google Scholar
  2. Banoub, M. W. 1973. A method for the determination of particulate organic nitrogen in natural waters. Intern. J. Environ. Anal. Chem. 2: 107–112.CrossRefGoogle Scholar
  3. Banoub, M. W. 1978. Limnological observations on a recently dredged pond (gravel-pit). Verh. Internat. Verein. Limnol. 20: 1844–1849.Google Scholar
  4. Forsberg, C., Ryding, S. O., Forsberg, A. & Claessen, A. 1978. Research on recovery of polluted lakes I. Improved water quality in lake Boren and lake Ekoln after nutrient reduction. Verh. Internat. Verein. Limnol. 20: 825–832.Google Scholar
  5. Göcke, K. 1974. Methodische Probleme bei Untersuchung zur mikrobiellen Stoffaufnahme in Gewässern. Kieler Meeresforsch. 30: 12–23.Google Scholar
  6. L.F.U. 1975. Wasserwirtschaftliche Untersuchungen an Baggerseen, Bericht 1. Landesanstalt f. Umweltschutz, Baden-Württemberg, Karlsruhe BRD.Google Scholar
  7. L.F.U. 1977. Wasserwirtschafliche Untersuchungen an Baggerseen, Bericht 2, Ibid.Google Scholar
  8. Schindler, D. W. 1977. Evolution of Phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  9. Steeman Nielsen, E. 1952. The use of (14C) for measuring organic production in the sea. J. Cons., Cons. Intern. Explor. Mer 18: 117–140.Google Scholar
  10. Strickland, J. D. H. & Parsons, T. R. 1968. A practical handbook of seawater analysis. Bull. 167. F.R.B, Can.Google Scholar
  11. Trussell, R. P. 1972. The percent un-ionized ammonia in aqueous ammonia solutions at different pH levels and temperatures. J. Fish. Res. Board Can. 29: 1505–1507.CrossRefGoogle Scholar
  12. Vollenweider, R. A. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53–83Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers-The Hague, The Netherlands 1980

Authors and Affiliations

  • M. W. Banoub
    • 1
  1. 1.Landesanstalt f. Umweltschutz Baden-WürttembergInstitut für Wasser- und AbfallwirtschaftKarlsruheGermany

Personalised recommendations